首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein kinase specific for casein and acidic ribosomal proteins was isolated and partly characterized.It was found that the enzyme utilizes GTP and ATP as phosphoryl donors. Its affinity for ATP was considerably higher than for GTP with the km values of 7.6 × 10-6M and 5.5 × 10-5M, respectively.Two-dimensional acrylamide gel electrophoresis revealed the phosphorylation of the same ribosomal proteins with either of the [-32P] nucleotides used. It was also shown that one acidic protein (S1 or S2) of 40 S and two acidic proteins (L2 and L3) of 60 S ribosomal subunits were predominantly phosphorylated in vitro. The phosphorylated proteins: L2 and L3 seem to correspond to the proteins of L7 and L12 of E. coli ribosomes. The isolated kinase phosphorylated several basic ribosomal proteins though to a lower extent than the acidic ones.  相似文献   

2.
Summary The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62–78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared.  相似文献   

3.
1. 70 S ribosomes isolated from strains of Escherichia coli 113-3, K12 and B take part in vitamin B-12 biosynthesis from AdoCbi-GDP, NAD and dimethylbenzimidazole in the presence of enzymes of the cytosol fraction. 2. 70 S ribosomes from E. coli 113-3 bind Ado[58Co]Cbi-GDP. This reaction is independent of fusidic acid. 3. Proteins from 5 S RNA complex as well as L2 protein isolated from E. coli 113-3 ribosomes catalyze vitamin B-12 biosynthesis. The main catalytic function in this reaction is performed by protein L18.4. Vitamin B-12 biosynthesis proceeding in the presence of isolated ribosomal proteins is inhibited by fusidic acid, chloramphenicol and vernamycin but not by erythromycin. 5. Vitamin B-12 synthesized in the presence of isolated ribosomal proteins is biologically active.  相似文献   

4.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

5.
Some structural and functional properties of ribosomes from the hydrogen-oxidizing bacterium Alcaligenes eutrophus were studied in order to investigate the background of expression of genetic information at the translational level. Ribosomal proteins from 30S subunits of A. eutrophus H16 were separated by two-dimensional gel electrophoresis into 21 spots, those from 50S subunits into 32 spots. While electrophoretic mobilities of several ribosomal proteins differed markedly from those of Escherichia coli, proteins sharing common immunological determinants with E. coli ribosomal proteins S1 and L7/L12 were found in A. eutrophus. Shifting from heterotrophic to autotrophic conditions of growth had no influence on the ribosomal protein pattern. Ribosomes of A. eutrophus had similar requirements for Mg2+ and poly(U) concentrations for optimum polyphenylalanine synthesis as those of E. coli. Protein synthesis elongation factors Tu from A. eutrophus and E. coli were immunologically similar. Efficiency of the A. eutrophus polyphenylalanine-synthesizing system was comparable to that of an analogous system derived from E. coli. This suggests that A. eutrophus could be employed for efficient expression of recombinant DNA.  相似文献   

6.
After labeling for two hours in vivo with 32P-labeled orthophosphate, proteins from cytoplasmic ribosomes and nucleolar preribosomal particles of Novikoff hepatoma ascites cells were analyzed by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Five proteins (B2, B3, B6, B32 and B35P) were phosphorylated in the ribosomes. Approximately 19 proteins were phosphorylated in the nucleolar preribosomal particles; although four of these were ribosomal proteins, they were different from the proteins labeled in the ribosomes. The 15 additional phosphorylated nucleolar preribosomal particle proteins were non-ribosomal. These results suggest that phosphorylation of proteins of the nucleolar preribosomal particles is independent of phosphorylation of the cytoplasmic ribosomal proteins and may be a part of the maturation process of preribosomal particles.  相似文献   

7.
Proteins occurring at, or near, the subunit interface of E. coli ribosomes   总被引:9,自引:0,他引:9  
Summary The identification of ribosomal proteins that occur at, or near, the subunit interface of the 30S and 50S subunits in the E. coli 70S ribosome was attempted by studying the effect of antibodies on the Mg++ dependent dissociation-association equilibrium of 70S ribosomes. Dissociated ribosomes were mixed with monovalent fragments of IgG antibodies (Fab's) specific for each ribosomal protein and then reassociated into intact 70S particles. Various degrees of inhibition of this reassociation were observed for proteins S9, S11, S12, S14, S20, L1, L6, L14, L15, L19, L20, L23, L26 and L27. A small amount of aggregation of 50S subunits was caused by IgG's specific for the proteins S9, S11, S12, S14 and S20 and purified 50S subunits. It was inferred that the presence of small amounts of these proteins on 50S subunits was compatible with their presence at the subunit interface. Finally, the capacity of proteins S11 and S12 to bind to 23S RNA was demonstrated.Paper No. 84 on Ribosomal Proteins. Preceding paper is by Rahmsdorf et al., Molec. gen. Genet. 127, 259–271 (1973).  相似文献   

8.
Summary Ribosomes are isolated from spinach plastids using conventional sucrose gradients. Their subunits are prepared by dissociation using low Mg2+ concentration.It is shown that plastid ribosomes are able to bind f-met-tRNA in the presence of the initiation factors from E. coli.The characterization of ribosomal proteins is carried out using the four two-dimensional gel electrophoretic systems of Madjar et al. (1979). The 30 S and 50 S subunits contain 24 and 34 ribosomal poteins, respectively. These proteins are found in the 70S monosomes which also contain most often nine additional faintly stained proteins.  相似文献   

9.
In a study of the translational efficiency of ribosomal subunits as a function of an in vivo temperature pretreatment, ribosomes were isolated from heat-pretreated (36°C) and reference (20°C) wheat seedlings (Triticum aestivum L.). The efficiency of recombined subunits in translating polyuridylic acid was assessed. A threefold increase in the rate of incorporation of phenylalanine by ribosomes from heat-pretreated plants was due to the large ribosomal subunit. This adaptive temperature effect was not correlated with a higher thermal stability of ribosomes or subunits from heat-pretreated seedlings, and two-dimensional gel electrophoresis failed to detect structural alterations of ribosomal proteins. Phosphorylation of ribosomal proteins in vitro showed no differences between ribosomes or subunits from heat-pretreated and reference plants. Incubation with [32P]orthophosphate in vivo led to twice the amount of phosphate in ribosomal proteins from heat-pretreated wheat seedlings. This result is important with respect to the evaluation of the molecular basis of enhanced translational efficiency of ribosomes isolated from heat-pretreated wheat seedlings.  相似文献   

10.
Synthesis of ribosomal proteins during growth of Streptomyces coelicolor   总被引:2,自引:2,他引:0  
Changes in expression of ribosomal protein genes during growth and stationary phase of Streptomyces coelicolor A3(2) in liquid medium were studied. Proteins being synthesized were pulse-labelled with [35 S]-methionine, separated by two-dimensional poly-acrylamide gel electrophoresis, and quantified using the Bioimage computer software. Most of the ribosomal proteins were synthesized throughout the life cycle. Exceptions were two proteins whose synthesis drastically decreased at the approach of stationary phase. These two proteins were identified in purified ribosomes as homologues of Escherichia coli ribosomal proteins L10 and L7/L12, using antibodies raised against fusion proteins between these ribosomal proteins and Escherichia coliβ-galactosldase. The genes (rplJ and rplL) encoding the L10 and L7/L12 proteins were contained in a 1.2 kb BamHl fragment that was cloned and sequenced. The linkage and order of the genes coincide with other L10-L7/L12 operons. However, L11 and L1 genes were not present immediately upstream of the L10 gene, as is the case for E. coli and other bacteria. Instead, two open reading frames of unknown function were found immediately upstream of the L10 gene, in an adjacent 1.9 kb BamHl fragment.  相似文献   

11.
A series of peptidyl-tRNA analogs with varying peptide chain length, BrAc(Gly) nPhe-tRNAphe, n = 0 to 16 has been prepared. When bound to Escherichia coli 70 S ribosomes these all react covalently with certain ribosomal proteins. The overwhelming majority of the reaction is with 50 S ribosomal proteins L2, L16, L24, L26–L27 and L32–L33. The extent of reaction with each protein is a function of peptide chain length, making it possible to estimate the relative proximity of these proteins to the 3′-terminus of tRNA bound in the ribosomal P site. This fact, coupled with the findings of others about the length dependence of the binding and peptide donor activity of peptidyl-tRNAs suggests that there is actually a binding site for the growing peptide chain. If this is true, the results presented here permit the ordering of the proteins in this site: L2 is closest to the 3′-end of tRNA followed by L26–L27, L32–L33 and last L24. Evidence is also given that the direction of the growing peptide chain must point away from the A site.  相似文献   

12.
The direct assays on Biacore with immobilised RRF and purified L11 from E. coli in the flow trough have shown unspecific binding between the both proteins. The interaction of RRF with GTPase domain of E. coli ribosomes, a functionally active complex of L11 with 23S r RNA and L10.(L7/L12)4 was studied by Biacore. In the experiments of binding of RRF with 30S, 50S and 70S ribosomes from E. coli were used the antibiotics thiostrepton, tetracycline and neomycin and factors, influencing the 70S dissociation Mg2+, NH4Cl, EDTA. The binding is strongly dependent from the concentrations of RRF, Mg2+, NH4Cl, EDTA and is inhibited by thiostrepton. The effect is most specific for 50S subunits and indicates that the GTPase centre can be considered as a possible site of interaction of RRF with the ribosome. We can consider an electrostatic character of the interactions with most probable candidate 16S and 23S r RNA at the interface of 30S and 50S ribosomal subunits.  相似文献   

13.
E.coli 70S ribosomes uniformly labeled invivo with 32PO4 were subjected to varying doses of u.v. radiation and then to the combined action of the RNases A and T1. Following these treatments the ribosomal proteins were separated by trichloroacetic acid precipitation from the noncovalently attached RNA degradation fragments. Subsequent two-dimensional gel electrophoresis and autoradiography of these proteins revealed that significant 32PO4 was associated with unique ribosomal proteins, L2 was among these.  相似文献   

14.
Rabbits were immunised againstEscherichia coli ribosomes and the partially purified immunoglobulin G fraction had maximum ability to precipitate the ribosomes as well as the extracted ribosomal proteins. By digestion of immuno-globulin G with papain, monovalent Fab fragments were produced. The 70 S ribosome and its subunits (50 S and 30 S) were separately treated with Fab and then tested in the kinetic assay of degradation of ribosomes by ribonuclease I at various Mg2+ concentrations. Treated ribosomes and their subunits were degraded at faster rates than the nontreated ones; the rates in both the control and the treated cases were dependent on the concentration of Mg2+. These results indicate the unfolding of the structure of the ribosome on treatment with antibody fragments, which may be due to the weakening of the interaction between rRNAs and ribosomal proteins.  相似文献   

15.
Summary The ribosomal proteins of temperature-sensitive mutants of Escherichia coli isolated independently after mutagenesis with nitrosoguanidine were analyzed by two-dimensional gel electrophoresis. Out of 400 mutants analyzed, 60 mutants (15%) showed alterations in a total of 22 different ribosomal proteins. The proteins altered in these mutants are S2, S4, S6, S7, S8, S10, S15, S16, S18, L1, L3, L6, L10, L11, L14, L15, L17, L18, L19, L22, L23 and L24. A large number of them (25 mutants) have mutations in protein S4 of the small subunit, while four mutants showed alterations in protein L6 of the large subunit. The importance of these mutants for structural and functional analyses of ribosomes is discussed.  相似文献   

16.
The polypeptides of the subunits of 70S ribosomes isolated from rye (Secale cereale L.) leaf chloroplasts were analyzed by two-dimensional polyacrylamide gel electrophoresis. The 50S subunit contained approx. 33 polypeptides in the range of relative molecular mass (Mr) 13000–36000, the 30S subunit contained approx. 25 polypeptides in the range of Mr 13000–40500. Antisera raised against the individual isolated ribosomal subunits detected approx. 17 polypeptides of the 50S and 10 polypeptides of the 30S subunit in the immunoblotting assay. By immunoblotting with these antisera the major antigenic ribosomal polypeptides (r-proteins) of the chloroplasts were clearly and specifically visualized also in separations of leaf extracts or soluble chloroplast supernatants. In extracts from rye leaves grown at 32° C, a temperature which is non-permissive for 70S-ribosome formation, or in supernatants from ribosome-deficient isolated plastids, six plastidic r-proteins were visualized by immunoblotting with the anti-50S-serum and two to four plastidic r-proteins were detected by immunoblotting with the anti-30S-serum, while other r-proteins that reacted with our antisera were missing. Those plastidic r-proteins that were present in 70S-ribosome-deficient leaves must represent individual unassembled ribosomal polypeptides that were synthesized on cytoplasmic 80S ribosomes. For the biogenesis of chloroplast ribosomes the mechanism of coordinate regulation appear to be less strict than those known for the biogenesis of bacterial ribosomes, thus allowing a marked accumulation of several unassembled ribosomal polypeptides of cytoplasmic origin.Abbreviations L polypeptide of large ribosomal subunit - Mr relative molecular mass - r-protein ribosomal polypeptide - S polypeptide of small ribosomal subunit - SDS sodium dodecyl sulfate  相似文献   

17.
18.
Summary In order to establish whether ribosomes exhibit heterogeneity with respect to their protein pattern in vivo, E. coli cells were grown in rich or minimal medium and labeled with 14C and 3H amino acid mixture, respectively. After harvesting, the cells from the different media were mixed, the differently labeled ribosomes isolated and the ribosomal proteins separated. For each protein the ratio of 14C to 3H was determined and used as an indication of whether differences exist in ribosomal populations synthesized under different growth conditions.With respect to their ratio the ribosomal proteins can be classified as follows: Many of the proteins have a ratio of 1, i. e. they are present in the same amount in both preparations. The ratios for about 30% of the proteins differ only slightly from 1 whereas three proteins namely S6, S21 and L12 have ratios of 2.5 and 3.1 respectively. This means that ribosomal populations isolated from cells grown in rich medium contain these three proteins in two to three fold greater amounts compared to those synthesized in minimal medium.The relevance of these results with respect to the occurrence of heterogeneous ribosomal populations in vivo is discussed.Paper Nr. 36 on Ribosomal Proteins. Preceding paper is by H. J. Weber, Mol. Gen. Genetics 119, 233–248 (1972).  相似文献   

19.
70S ribosomes and 30S ribosomal subunits from Escherichia coli MRE 600 were exposed to gamma irradiation at -80szC. Exponential decline of activity with dose was observed when the ability of ribosomes to support the synthesis of polyphenylalanine was assayed. Irradiated ribosomes showed also an increased thermal lability. D37 values of 2.2 MR and 4.8 MR, corresponding to radiation-sensitive molecular weights of 3.1 × 105 and 1.4 × 105, were determined for inactivation of 70S ribosomes and 30S subunits, respectively. Zone sedimentation analysis of RNA isolated from irradiated bacteria or 30S ribosomal subunits showed that at average, one chain scission occurs per four hits into ribosomal RNA. From these results it was concluded that the integrity of only a part of ribosomal proteins (the sum of their molecular weights not exceeding 1.4 × 105) could be essential for the function of the 30S subunit in the polymerization of phenylalanine. This amount is smaller if the breaks in the RNA chain inactivate the ribosome.  相似文献   

20.
Ribosomes after infection with bacteriophage T4 and T7   总被引:7,自引:0,他引:7  
Summary The synthesis of E. coli ribosomal proteins ceases after infection with bacteriophages T4 or T7 as does the synthesis of most other host proteins. The shut-off does not affect all ribosomal proteins to the same extent. After T7 infection no new proteins were detected in NH4Cl-washed ribosomal particles. Bacteriophage T4, however, induces 3–4 new protein bands demonstrated by one-dimensional gel electrophoresis. The appearance of these bands is prevented by the addition of rifampicin at the time of infection but not when rifampicin is added one minute after infection. The NH4Cl-washed ribosomal particles present at the time of T7 or T4 infection do not show any structural changes by sedimentation, subunit dissociation, or protein analysis on two-dimensional polyacrylamide gels. However, by labeling the T7 infected cells with 32P-phosphate, it is seen that the ribosomes become phosphorylated. The 32P-label comigrates with ribosomal proteins. This phosphorylating activity depends on a T7 gene. The T7 protein phosphokinase utilizes ribosomes as phosphate acceptor in vitro. The T7 ribosomes (NH4Cl-washed) still function in vitro as do ribosomal particles from uninfected cells.Paper No. 83 on Ribosomal Proteins. Preceding paper is by Isono et al., Mol. gen. Genet. 127, 191–195 (1973).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号