首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Escherichia coli carrying a natural conjugative F-plasmid generates F-pili mating pairs, which is important for early biofilm formation. In this study, we investigated the effect of male-specific filamentous single stranded DNA bacteriophage (f1) and RNA bacteriophage (MS2) on the formation of biofilms by E. coli carrying a natural conjugative F-plasmid. We showed that the early biofilm formation was completely inhibited by addition of the f1 phage, but not the MS2 phage. This suggests that the tip of F-pili is the specific attachment site for mating pairs formation and the side of F-pili has a non-obligatory role during biofilm formation. The inhibitory effect of the f1 phage was dependent on the time of addition during the biofilm formation. No inhibitory effect was observed when the f1 phages were added to the mature biofilms. This resistant mechanism of the mature biofilms could be attributed to the biofilm-specific phenotypes representing that the F-pili mating pairs were already formed and then the curli production commenced during the biofilm maturation. The pre-formed mating pairs seemed to resist the f1 phages. Altogether, our results indicate a close relationship between the presence of conjugative plasmid and male-specific bacteriophages within sessile biofilm communities, as well as the possibility of using the male-specific bacteriophages to control biofilm formation.  相似文献   

3.
Uropathogenic Escherichia coli (UPEC), which accounts for 85% of urinary tract infections (UTI), assembles biofilms in diverse environments, including the host. Besides forming biofilms on biotic surfaces and catheters, UPEC has evolved an intracellular pathogenic cascade that culminates in the formation of biofilm-like intracellular bacterial communities (IBCs) within bladder epithelial cells. Rapid bacterial replication during IBC formation augments a build-up in bacterial numbers and persistence within the host. Relatively little is known about factors mediating UPEC biofilm formation and how these overlap with IBC formation. To address this gap, we screened a UPEC transposon mutant library in three in vitro biofilm conditions: Luria broth (LB)-polyvinyl chloride (PVC), YESCA (yeast extract-Casamino Acids)-PVC, and YESCA-pellicle that are dependent on type 1 pili (LB) and curli (YESCA), respectively. Flagella are important in all three conditions. Mutants were identified that had biofilm defects in all three conditions but had no significant effects on the expression of type 1 pili, curli, or flagella. Thus, this approach uncovered a comprehensive inventory of novel effectors and regulators that are involved in UPEC biofilm formation under multiple conditions. A subset of these mutants was found to be dramatically attenuated and unable to form IBCs in a murine model of UTI. Collectively, this study expands our insights into UPEC multicellular behavior that may provide insights into IBC formation and virulence.  相似文献   

4.
Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this interplay on the pathogenesis of urinary tract infections. Our results suggest that curli and cellulose exhibit differential and complementary functions. Both of these biofilm components were expressed by a high proportion of clinical E. coli isolates. Curli promoted adherence to epithelial cells and resistance against the human antimicrobial peptide LL-37, but also increased the induction of the proinflammatory cytokine IL-8. Cellulose production, on the other hand, reduced immune induction and hence delayed bacterial elimination from the kidneys. Interestingly, LL-37 inhibited curli formation by preventing the polymerization of the major curli subunit, CsgA. Thus, even relatively low concentrations of LL-37 inhibited curli-mediated biofilm formation in vitro. Taken together, our data demonstrate that biofilm components are involved in the pathogenesis of urinary tract infections by E. coli and can be a target of local immune defense mechanisms.  相似文献   

5.
This work was performed to establish a model describing bacterial surface structures involved in biofilm development, in curli-overproducing Escherichia coli K-12 strains, at 30°C, and in minimal growth medium. Using a genetic approach, in association with observations of sessile communities by light and electron microscopic techniques, the role of protein surface structures, such as flagella and curli, and saccharidic surface components, such as the E. coli exopolysaccharide, colanic acid, was determined. We show that, in the context of adherent ompR234 strains, (i) flagellar motility is not required for initial adhesion and biofilm development; (ii) both primary adhesion to inert surfaces and development of multilayered cell clusters require curli synthesis; (iii) curli display direct interactions with the substratum and form interbacterial bundles, allowing a cohesive and stable association of cells; and (iv) colanic acid does not appear critical for bacterial adhesion and further biofilm development but contributes to the biofilm architecture and allows for the formation of voluminous biofilms.  相似文献   

6.
Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation.  相似文献   

7.
Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB− mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB− mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.  相似文献   

8.
Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (Gs′) and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface.  相似文献   

9.
10.
11.
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.Bacterial biofilms are complex communities of bacterial cells living in close association with a surface (17). Bacterial cells in these protected environments are often resistant to multiple factors, including antimicrobials, changes in the pH, oxygen radicals, and host immune defenses (19, 38). Biofilm formation is a property of many bacterial species, and a range of molecular mechanisms that facilitate this process have been described (2, 3, 11, 14, 16, 29, 33, 34). Often, the ability to form a biofilm is dependent on the production of adhesins on the bacterial cell surface. In Escherichia coli, biofilm formation is enhanced by the production of certain types of fimbriae (e.g., type 1 fimbriae, type 3 fimbriae, F1C, F9, curli, and conjugative pili) (14, 23, 25, 29, 33, 39, 46), cell surface adhesins (e.g., autotransporter proteins such as antigen 43, AidA, TibA, EhaA, and UpaG) (21, 34, 35, 40, 43), and flagella (22, 45).The close proximity of bacterial cells in biofilms creates an environment conducive for the exchange of genetic material. Indeed, plasmid-mediated conjugation in monospecific and mixed E. coli biofilms has been demonstrated (6, 18, 24, 31). The F plasmid represents the best-characterized conjugative system for biofilm formation by E. coli. The F pilus mediates adhesion to abiotic surfaces and stabilizes the biofilm structure through cell-cell interactions (16, 30). Many other conjugative plasmids also contribute directly to biofilm formation upon derepression of the conjugative function (16).One example of a conjugative system employed by gram-negative Enterobacteriaceae is the type 4 secretion (T4S) system. The T4S system is a multisubunit structure that spans the cell envelope and contains a secretion channel often linked to a pilus or other surface filament or protein (8). The Agrobacterium tumefaciens VirB-VirD4 system is the archetypical T4S system and is encoded by 11 genes in the virB operon and one gene (virD4) in the virD operon (7, 8). Genes with strong homology to genes in the virB operon have also been identified on other conjugative plasmids. For example, the pilX1 to pilX11 genes on the E. coli R6K IncX plasmid and the virB1 to virB11 genes are highly conserved at the nucleotide level (28).We recently described identification and characterization of the mrk genes encoding type 3 fimbriae in a uropathogenic strain of E. coli isolated from a patient with a nosocomial catheter-associated urinary tract infection (CAUTI) (29). The mrk genes were located on a conjugative plasmid (pMAS2027) and were strongly associated with biofilm formation. In this study we determined the entire sequence of plasmid pMAS2027 and revealed the presence of conjugative transfer genes homologous to the pilX1 to pilX11 genes of E. coli R6K (in addition to the mrk genes). We show here that biofilm formation is driven primarily by type 3 fimbriae and that the T4S apparatus is unable to mediate biofilm growth in the absence of the mrk genes. Finally, we demonstrate that conjugative transfer of pMAS2027 within a mixed biofilm confers biofilm formation properties on recipient cells due to acquisition of the type 3 fimbria-encoding mrk genes.  相似文献   

12.
Bacteria form biofilms by adhering to biotic or abiotic surfaces. This phenomenon causes several problems, including a reduction in the transport of mass and heat, an increase in resistance to antibiotics, and a shortening of the lifetimes of modules in bioindustrial fermentors. To overcome these difficulties, we created a biofilm production-deficient Escherichia coli strain, BD123, by deleting genes involved in curli biosynthesis and assembly, Δ(csgG-csgC); colanic acid biosynthesis and assembly, Δ(wcaL-wza); and type I pilus biosynthesis, Δ(fimB-fimH). E. coli BD123 remained mostly in the form of planktonic cells under the conditions tested and became more sensitive to the antibiotics streptomycin and rifampin than the wild-type E. coli MG1655: the growth of BD123 was inhibited by one-fourth of the concentrations needed to inhibit MG1655. In addition, the transformation efficiency of BD123 was about 20 times higher than that of MG1655, and the production and secretion of recombinant proteins were ~16% and ~25% greater, respectively, with BD123 than with MG1655. These results indicate that the newly created biofilm production-deficient strain of E. coli displays several key properties that substantially enhance its utility in the biotechnology arena.  相似文献   

13.
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infection and engage in a coordinated genetic and molecular cascade to colonize the urinary tract. Disrupting the assembly and/or function of virulence factors and bacterial biofilms has emerged as an attractive target for the development of new therapeutic strategies to prevent and treat urinary tract infection, particularly in the era of increasing antibiotic resistance among human pathogens. UPEC vary widely in their genetic and molecular phenotypes and more data are needed to understand the features that distinguish isolates as more or less virulent and as more robust biofilm formers or poor biofilm formers. Curli are extracellular functional amyloid fibers produced by E. coli that contribute to pathogenesis and influence the host response during urinary tract infection (UTI). We have examined the production of curli and curli-associated phenotypes including biofilm formation among a specific panel of human clinical UPEC that has been studied extensively in the mouse model of UTI. Motility, curli production, and curli-associated biofilm formation attached to plastic were the most prevalent behaviors, shared by most clinical isolates. We discuss these results in the context on the previously reported behavior and phenotypes of these isolates in the murine cystitis model in vivo.  相似文献   

14.
Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.  相似文献   

15.
Biofilms are microbial communities with genetically divergent microorganisms. Such communal behavior is known to provide survival benefit to the unicellular organisms in adverse conditions. Pathogenicity of opportunistic bacterial pathogens largely depends on their success in proper quorum establishment and biofilm formation. Thus molecules causing quorum-sensing attenuation, preventing the biofilm formation or instigating preformed biofilm dislodgement could serve as attractive drugs/drug supplements. Here we investigate the effect of nisin??type A lantibiotic naturally produced by Lactococcus lactis??on laboratory developed Escherichia coli biofilms and on isolated human neutrophils. Activity evaluation was done on the biofilms of clinical isolates of E. coli, developed on glass slides in a simple static bioreactor design. Nisin not only inhibited the formation but also effectively dislodged the preformed E. coli biofilms developed on glass surfaces. Presence of nisin also demonstrated a significant decrease in the expression of E. coli virulence factors viz. hemolysin and curli expression. The microorganisms dislodged from the biofilms and set free in the circulation of infected host might later reassociate to form new biofilms after nisin clearance from circulation. Thus complete eradication of infective bacterium will depend on stimulatory effect of nisin (if any) on human immune system cells. Therefore modulation of human neutrophil activity by nisin was also evaluated. Presence of nisin induced neutrophil extracellular trap (NET) formation or NETosis in a manner similar to that demonstrated by LPS (lipopolysaccharide) in vitro. Our results thus present nisin as a plausible molecule to be used in treatment of chronic bacterial infections as it indicated increased fitness for the same.  相似文献   

16.
Development and maturation of Escherichia coli K-12 biofilms   总被引:4,自引:0,他引:4  
The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa. The development occurred in a step-wise process: (i). attachment of cells to the substratum, (ii). clonal growth and microcolony formation, and (iii). differentiation into expanding structures rising 70-100 microm into the water phase. The first two steps were the same in the plasmid-carrying and plasmid-free strains, whereas the third step only occurred in conjugation pilus proficient plasmid-carrying strains. The final shapes of the expanding structures in the mature biofilm seem to be determined by the pilus configuration, as various mutants affected in the processing and activity of the transfer pili displayed differently structured biofilms. We further provide evidence that flagella, type 1 fimbriae, curli and Ag43 are all dispensable for the observed biofilm maturation. In addition, our results indicate that cell-to-cell signalling mediated by autoinducer 2 (AI-2) is not required for differentiation of E. coli within a biofilm community. We suggest on the basis of these results that E. coli K-12 biofilm development and maturation is dependent on cell-cell adhesion factors, which may act as inducers of self-assembly processes that result in differently structured biofilms depending on the adhesive properties on the cell surface.  相似文献   

17.
18.
Crohn''s disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20th century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute to disease susceptibility.  相似文献   

19.
Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms.  相似文献   

20.
In bacterial biofilms, which are often involved in chronic infections, cells are surrounded by a self‐produced extracellular matrix that contains amyloid fibres, exopolysaccharides and other biopolymers. The matrix contributes to the pronounced resistance of biofilms against antibiotics and host immune systems. Being highly inflammatory, matrix amyloids such as curli fibres of Escherichia coli can also play a role in pathogenicity. Using macrocolony biofilms of commensal and pathogenic E. coli as a model system, we demonstrate here that the green tea polyphenol epigallocatachin gallate (EGCG) is a potent antibiofilm agent. EGCG virtually eliminates the biofilm matrix by directly interfering with the assembly of curli subunits into amyloid fibres, and by triggering the σE cell envelope stress response and thereby reducing the expression of CsgD – a crucial activator of curli and cellulose biosynthesis – due to csgD mRNA targeting by the σE‐dependent sRNA RybB. These findings highlight EGCG as a potential adjuvant for antibiotic therapy of biofilm‐associated infections. Moreover, EGCG may support therapies against pathogenic E. coli that produce inflammatory curli fibres along with Shigatoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号