首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously demonstrated that the amyloid precursor protein (APP) interacts with Notch receptors. Here, we confirmed the APP/Notch1 endogenous interaction in embryonic day 17 rat brain tissue, suggesting the interaction was not as a result of over-expression artifacts. To investigate potential homodimeric and heterodimeric interactions of APP and Notch2 (N2), we have visualized the subcellular localization of the APP/N2 complexes formed in living cells using bimolecular fluorescence complementation (BiFC) analysis. BiFC was accomplished by fusing the N-terminal fragment or the C-terminal fragment of yellow fluorescent protein (YFP) to APP, N2, and a C-terminally truncated form of N2. When expressed in COS-7 cells, these tagged proteins alone did not produce a fluorescent signal. The tagged APP homodimer produced a weak fluorescent signal, while neither full-length N2, nor a truncated N2 alone, produced a visible signal, suggesting that N2 receptors do not form homodimers. The strongest fluorescent signal was obtained with co-expression of the C-terminal fragment of YFP fused to APP and the N-terminal fragment of YFP fused to the truncated form of N2. This heterodimer localized to plasma membrane, endoplasmic reticulum (ER), Golgi and other compartments. The results were confirmed and quantified by flow cytometry. The BiFC method of specifically visualizing APP/Notch interactions can be applied to study APP and Notch signaling during development, aging and neurodegeneration.  相似文献   

2.
3.
Visualization of myosin in living cells   总被引:7,自引:11,他引:7       下载免费PDF全文
Myosin light chains labeled with rhodamine are incorporated into myosin-containing structures when microinjected into live muscle and nonmuscle cells. A mixture of myosin light chains was prepared from chicken skeletal muscle, labeled with the fluorescent dye iodoacetamido rhodamine, and separated into individual labeled light chains, LC-1, LC-2, and LC-3. In isolated rabbit and insect myofibrils, the fluorescent light chains bound in a doublet pattern in the A bands with no binding in the cross-bridge-free region in the center of the A bands. When injected into living embryonic chick myotubes and cardiac myocytes, the fluorescent light chains were also incorporated along the complete length of the A band with the exception of the pseudo-H zone. In young myotubes (3-4 d old), myosin was localized in aperiodic as well as periodic fibers. The doublet A band pattern first appeared in 5-d-old myotubes, which also exhibited the first signs of contractility. In 6-d and older myotubes, A bands became increasingly more aligned, their edges sharper, and the separation between them (I bands) wider. In nonmuscle cells, the microinjected fluorescent light chains were incorporated in a striated pattern in stress fibers and were absent from foci and attachment plaques. When the stress fibers of live injected cells were disrupted with DMSO, fluorescently labeled myosin light chains were present in the cytoplasm but did not enter the nucleus. Removal of the DMSO led to the reformation of banded, fluorescent stress fibers within 45 min. In dividing cells, myosin light chains were concentrated in the cleavage furrow and became reincorporated in stress fibers after cytokinesis. Thus, injected nonmuscle cells can disassemble and reassemble contractile fibers using hybrid myosin molecules that contain muscle light chains and nonmuscle heavy chains. Our experiments demonstrate that fluorescently labeled myosin light chains from muscle can be readily incorporated into muscle and nonmuscle myosins and then used to follow the dynamics of myosin distribution in living cells.  相似文献   

4.
The role of mRNA localization is presumably to effect cell asymmetry by synthesizing proteins in specific cellular compartments. However, protein synthesis has never been directly demonstrated at the sites of mRNA localization. To address this, we developed a live cell method for imaging translation of beta-actin mRNA. Constructs coding for beta-actin, containing tetracysteine motifs, were transfected into C2C12 cells, and sites of nascent polypeptide chains were detected using the biarsenial dyes FlAsH and ReAsH, a technique we call translation site imaging. These sites colocalized with beta-actin mRNA at the leading edge of motile myoblasts, confirming that they were translating. beta-Actin mRNA lacking the sequence (zipcode) that localizes the mRNA to the cell periphery, eliminated the translation there. A pulse-chase experiment on living cells showed that the recently synthesized protein correlated spatially with the sites of its translation. Additionally, localization of beta-actin mRNA and translation activity was enhanced at cell contacts and facilitated the formation of intercellular junctions.  相似文献   

5.
6.
Methods applicable to visualizing single fluorophores in living cells are described, namely, laser epifluorescence, confocal, near-field, two-photon, and total internal reflection microscopy. It is demonstrated that total internal reflection microscopy is the most appropriate for visualizing single fluorophores near the substrate-medium interface. This method can be used for studying receptors, ion channels, and numerous cytoskeletal and signal molecules located on or near the basal cell membrane. It is demonstrated that stringent criteria are necessary when identifying single molecules, as these objects emit a limited number of photons before irreversible photobleaching and their fluorescence is obscured by autofluorescence or out-of-focus fluorescence. The methods used for studying the lateral mobility of single molecules floating on the cell membrane are also described.  相似文献   

7.
In order to study the dynamics of gap junctions in living cells, a cDNA was expressed in hepatocellular carcinoma-derived PLC cells coding for chimerical polypeptide Cx.EGFP-1, which consists of rat connexin32 and enhanced green fluorescent protein (EGFP). Cx.EGFP-1 was integrated into gap junctions, and the emitted epifluorescence reliably reported the distribution of the chimera. Therefore, stably transfected PLC clone PCx-9 was used to examine the dynamic behavior of gap junctions by time-lapse fluorescence microscopy. The pleomorphic fluorescent junctional plaques were highly motile within the plasma membrane. They often fused with each other or segregated into smaller patches, and fluctuation of fluorescence was detected within individual gap junctions. Furthermore, the uptake of junctional fragments into the cytoplasm of live cells was documented as originating from dynamic invaginations that form long tubulovesicular structures that pinch off. Endocytosis and subsequent lysosomal degradation, however, appeared to contribute only a little to the rapid gap junction turnover (determined half-life of 3.3 h for Cx.EGFP-1), since most cytoplasmic Cx.EGFP-1 fluorescence did not colocalize with the endocytosed fluid phase marker horseradish peroxidase or the receptor-specific endocytotic ligand transferrin and since it was distinct from lysosomes. Disassembly of gap junctions was monitored in the presence of the translation-inhibitor cycloheximide and showed increased endocytosis and continuous reduction of junctional plaques. Highly motile cytoplasmic microvesicles, which were detectable as multiple, weakly fluorescent puncta in all movies, are proposed to contribute significantly to gap junction morphogenesis by the transport of small subunits between biosynthetic, degradative, and recycling compartments.  相似文献   

8.
9.
K. Ueda  T. Matsuyama  T. Hashimoto 《Protoplasma》1999,206(1-3):201-206
Summary Microtubules (MTs) were visualized in living cells of several tissues in transgenicArabidopsis thaliana. The transformed Arabidopsis plant was obtained by infecting it withAgrobacterium tumefaciens carrying the GFP-TUA6 plasmid. The fluorescence of the MTs was due to the fluorescence of GFP-TUA6 that was polymerized into the MTs. The distribution patterns of the visualized MTs in the living epidermal cells of leaves was similar to that in fixed epidermal cells. The actual destruction of MTs by oryzalin was observed in a living cell. Cytochalasin B exerts no effect on the distribution pattern of MTs. The fluorescence intensity of MTs was different among cells in different tissues.  相似文献   

10.
11.
12.
We regret that we must retract the article Visualization of the Vesicular Acetylcholine Transporter in Living Cholinergic Cells by M. S. Santos, J. Barbosa Jr., C. Kushmerick, M. V. Gomez, V. F. Prado, and M. A. M. Prado ( J. Neurochem . 74 , 2425-2435 , 2000). We have made an unintentional mistake in the construction of the enhanced green fluorescent protein (EGFP) vectors, and consequently the vesicular acetylcholine transporter (VAChT) and its truncated forms are incorrectly expressed. We have repeated the key experiments with proper constructs and have found that the expression pattern is clearly different from that reported in the article. The truncated form of VAChT, without the C-terminal tail, presents a distinct pattern of expression when compared to VAChT, and we have found no evidence that the C-terminal tail of VAChT is able to drive EGFP to varicosity sites. As a consequence of this problem, our earlier conclusions were incorrect. We apologize for this mistake and for any problems that we may have caused.  相似文献   

13.
To investigate PtdIns3P localization and function in plants, a fluorescent PtdIns3P-specific biosensor (YFP-2xFYVE) was created. On lipid dot blots it bound specifically and with high affinity to PtdIns3P. Transient expression in cowpea protoplasts labelled vacuolar membranes and highly motile structures undergoing fusion and fission. Stable expression in tobacco BY-2 cells labelled similar motile structures, but labelled vacuolar membranes hardly at all. YFP-2xFYVE fluorescence strongly co-localized with the pre-vacuolar marker AtRABF2b, partially co-localized with the endosomal tracer FM4-64, but showed no overlap with the Golgi marker STtmd-CFP. Treatment of cells with wortmannin, a PI3 kinase inhibitor, caused the YFP-2xFYVE fluorescence to redistribute into the cytosol and nucleus within 15 min. BY-2 cells expressing YFP-2xFYVE contained twice as much PtdIns3P as YFP-transformed cells, but this had no effect on cell-growth or stress-induced phospholipid signalling responses. Upon treatment with wortmannin, PtdIns3P levels were reduced by approximately 40% within 15 min in both cell lines. Stable expression of YFP-2xFYVE in Arabidopsis plants labelled different subcellular structures in root compared with shoot tissues. In addition labelling the motile structures common to all cells, YFP-2xFYVE strongly labelled the vacuolar membrane in leaf epidermal and guard cells, suggesting that cell differentiation alters the distribution of PtdIns3P. In dividing BY-2 cells, YFP-2xFYVE-labelled vesicles surrounded the newly formed cell plate, suggesting a role for PtdIns3P in cytokinesis. Together, these data show that YFP-2xFYVE may be used as a biosensor to specifically visualize PtdIns3P in living plant cells.  相似文献   

14.
Serotonin 5-HT4 receptor isoforms are G protein-coupled receptors (GPCRs) with distinct pharmacological properties and may represent a valuable target for the treatment of many human disorders. Here, we have explored the process of dimerization of human 5-HT4 receptor (h5-HT4R) by means of co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Constitutive h5-HT4(d)R dimer was observed in living cells and membrane preparation of CHO and HEK293 cells. 5-HT4R ligands did not influence the constitutive energy transfer of the h5-HT4(d)R splice variant in intact cells and isolated plasma membranes. In addition, we found that h5-HT4(d)R and h5-HT4(g)R which structurally differ in the length of their C-terminal tails were able to form constitutive heterodimers independently of their activation state. Finally, we found that coexpression of h5-HT4R and beta2-adrenergic receptor (beta2AR) led to their heterodimerization. Given the large number of h5-HT4R isoforms which are coexpressed in a same tissue, our results points out the complexity by which this 5-HTR sub-type mediates its biological effects.  相似文献   

15.
RNA–protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA–protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA–protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA–protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA–protein interactions in living cells.  相似文献   

16.
The present experiments investigated the trafficking of the vesicular acetylcholine transporter (VAChT) tagged with the enhanced green fluorescent protein (EGFP) in living cholinergic cells (SN56). The EGFP-VAChT chimera was located in endosomal-like compartments in the soma of SN56 cells, and it was also targeted to varicosities of neurites. In contrast, EGFP alone in cells was soluble in the cytoplasm. The C-terminal cytoplasmic tail of VAChT has been implicated in targeting of VAChT to synaptic vesicles; thus, we have examined the role of the C-terminal region in the trafficking to varicosities. A C-terminal fragment tagged with EGFP appeared to be selectively accumulated in varicosities when expressed in SN56 cells. Interestingly, the protein was not freely soluble in the cytosol, and it presented a punctate pattern of expression. However, EGFP-C terminus did not present this peculiar pattern of expression in a nonneuronal cell line (HEK 293). Moreover, the C-terminal region of VAChT did not seem to be essential for VAChT trafficking, as a construct that lacks the C-terminal tail was, similar to EGFP-VAChT, partially targeted to endocytic organelles in the soma and sorted to varicosities. These experiments visualize VAChT for the first time in living cells and suggest that there might be multiple signals that participate in trafficking of VAChT to sites of synaptic vesicle accumulation.  相似文献   

17.
Satellite cells were visualized in living muscle fibres of the frog. Single fibres or bundles consisting of a few fibres were isolated after treatment with collagenase, and viewed under the light microscope. Subsequent electron microscopy of identified cells confirmed that they were satellite muscle cells. Under the light microscope, satellite cells appear as fusiform cells, tapering into long fine processes usually orientated parallel to the muscle fibre axis. Horseradish peroxidase injected into the muscle fibre was not transferred to the satellite cells.  相似文献   

18.
Fluorescently labeled desmin was incorporated into intermediate filaments when microinjected into living tissue culture cells. The desmin, purified from chicken gizzard smooth muscle and labeled with the fluorescent dye iodoacetamido rhodamine, was capable of forming a network of 10-nm filaments in solution. The labeled protein associated specifically with the native vimentin filaments in permeabilized, unfixed interphase and mitotic PtK2 cells. The labeled desmin was microinjected into living, cultured embryonic skeletal myotubes, where it became incorporated in straight fibers aligned along the long axis of the myotubes. Upon exposure to nocodazole, microinjected myotubes exhibited wavy, fluorescent filament bundles around the muscle nuclei. In PtK2 cells, an epithelial cell line, injected desmin formed a filamentous network, which colocalized with the native vimentin intermediate filaments but not with the cytokeratin networks and microtubular arrays. Exposure of the injected cells to nocadazole or acrylamide caused the desmin network to collapse and form a perinuclear cap that was indistinguishable from vimentin caps in the same cells. During mitosis, labeled desmin filaments were excluded from the spindle area, forming a cage around it. The filaments were partitioned into two groups either during anaphase or at the completion of cytokinesis. In the former case, the perispindle desmin filaments appeared to be stretched into two parts by the elongating spindle. In the latter case, a continuous bundle of filaments extended along the length of the spindle and appeared to be pinched in two by the contracting cleavage furrow. In these cells, desmin filaments were present in the midbody where they gradually were removed as the desmin filament network became redistributed throughout the cytoplasm of the spreading daughter cells.  相似文献   

19.
The events preceding human immunodeficiency virus fusion and entry are influenced by the concentration and distribution of receptor and coreceptor molecules on the cell surface. However, the extent to which these proteins colocalize with one another in the cell membrane remains unclear. Using high-resolution deconvolution fluorescent microscopy of living cells, we found that both CD4 and CCR5 accumulate in protruding membrane structures containing actin and ezrin. Although CD4 and CCR5 extensively colocalize in these structures, they do not exist in a stable complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号