首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro-grown shoot tips of apples (Malus domestica Borkh. cv. Fuji) were successfully cryopreserved by vitrification. Three-week-old in vitro apple plantlets were cold-hardened at 5°C for 3 weeks. Excised shoot tips from hardened plantlets were precultured on a solidified Murashige & Skoog agar medium (MS) supplemented with 0.7 M sucrose for 1 day at 5°C. Following preculture shoot tips were transferred to a 2 ml plastic cryotube and a highly concentrated cryoprotective solution (designated PVS2) was then added at 25°C. The PVS2 contains (W/V) 30% glycerol, 15% ethylene glycol and 15% dimethylsulfoxide in medium containing 0.4 M sucrose. After dehydration at 25°C for 80 min, the shoot tips were directly plunged into liquid nitrogen. After rapid warming, the shoot tips were expelled into 2 ml of MS medium containing 1.2 M sucrose and then plated on agar MS medium. Direct shoot elongation was observed in approximately 3 weeks. The average rate of shoot formation was about 80%. This vitrification method was successfully applied to five apple species or cultivars and eight pear cultivars. This method appears to be a promising technique for cryopreserving shoot tips from in vitro-grown plantlets of fruit trees.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - PVS2 vitrification solution - LN liquid nitrogen - BA 6-benzylaminopurine - NAA -naphthaleneacetic acid - SE standard error - ABA abscisic acid  相似文献   

2.
The nucellar cells of navel orange(Citrus sinensis Osb. var. brasiliensis Tanaka) were successfully cryopreserved by vitrification. In this method, cells were sufficiently dehydrated with highly concentrated cryoprotective solution(PVS2) prior to direct plunge in liquid nitrogen. The PVS2 contains(w/v) 30% glycerol, 15% ethylene glycol and 15% DMSO in Murashige-Tucker medium(MT) containing 0.15 M sucrose. Cells were treated with 60% PVS2 at 25°C for 5 min and then chilled PVS2 at 0°C for 3 min. The cell suspension of about 0.1 ml was loaded in a 0.5 ml transparent plastic straw and directly plunged in liquid nitrogen for 30 min. After rapid warming, the cell suspension was expelled in 2 ml of MT medium containing 1.2 M sucrose. The average rate of survival was about 80%. The vitrified cells regenerated plantlets. This method is very simple and the time required for cryopreservation is only about 10 min.Abbreviations DMSO dimethyl sulfoxide - PVS2 vitrification solution - LN liquid nitrogen - DSC differential scanning calorimeter - BA 6-benzylaminopurine - MT Murashige-Tucker basal medium - INAA naphthaleneacetic acid  相似文献   

3.
Summary Vitrification is a technically simple method for cryopreserving plant germplasm, requiring only the application of suitable cryoprotectants and rapid cooling rates. Sweetpotato (Ipomoea batatas [L.] Lam.) shoot tips obtained from in vitro plants survived liquid nitrogen (–196°C) exposure following a vitrification-inducing pretreatment. Shoot tips were treated in a stepwise manner with a vitrification solution containing 30% glycerol, 15% ethylene glycol and 15% dimethylsulfoxide in growth medium. Incubation of shoot tips for 1 to 2 h in low concentrations of the vitrification solution enhanced survival. Most surviving shoot tips developed callus, and a variable percentage subsequently formed shoots. Survival was not achieved using two-step cooling procedures. The percentage of shoot tips surviving vitrification and those subsequently forming a shoot varied widely among replications.Abbreviations BA N6-benzyladenine - IBA indole-3-butyric acid - EG ethylene glycol - DMSO dimethylsulfoxide - MS Murashige and Skoog (1962) minerals and vitamins - LN liquid nitrogen - PI plant introduction  相似文献   

4.
The ability of shoot tips from carnation (Dianthus caryophyllus L., var. Eolo) cultured in vitro to develop resistance to freezing in liquid nitrogen depends on the physiological state of the cell material and the pretreatment conditions. Regrowth rates close to 100% have been obtained with apical shoot tips isolated from 2 month-old stems, precultured on medium supplemented with sucrose (0.75M) and treated with dimethylsulfoxide (5% or more). Resistance of axillary shoot tips decreased progressively as a funtion of their distance from the apical shoot tip. During the development of the stem from axillary buds (obtained by cutting), progressive increases in the regrowth rate of frozen apices were noted, from 30% before cutting (axillary buds) to 98% after 3 weeks of culture.Abbreviations DMSO dimethylsulfoxide - LN liquid nitrogen  相似文献   

5.
Summary In vitro-grown apical meristems of wasabi (Wasabia japonica Matsumura) were successfully cryopreserved by vitrification. Excised apical meristems precultured on solidified M S medium containing 0.3M sucrose at 20°C for 1 day were loaded with a mixture of 2M glycerol and 0.4M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) for 10 min at 25°C prior to a plunge into liquid nitrogen. After rapid warming, the meristems were expelled into 2 ml of 1.2M sucrose for 20 min and then plated on solidified culture medium. Successfully vitrified and warmed meristems remained green after plating, resumed growth within 3 days, and directly developed shoots within two weeks. The average rate of normal shoot formation amounted to about 80 to 90% in the cryopreserved meristems. This method was successfully applied to three other cultivars of wasabi. This vitrification procedure promises to become a routine method for cryopreserving meristems of wasabi.Abbreviations BA 6-benzylaminopurine - DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige and Skoog medium (1962) - PVS2 vitrification solution  相似文献   

6.
Apical meristems from adventitious buds induced by culturing of bulb-scale segments of Japanese Pink Lily (Lilium japonicum Thunb.) were successfully cryopreserved by a vitrification. The excised apical meristems were precultured on a solidified Murashige & Skoog medium, containing 0.3 M sucrose, for 1 day at 25°C and then loaded in a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) at 25°C for 20 min or at 0°C for 110 min prior to a plunge into liquid nitrogen. After rapid warming in a water bath at 40°C, the meristems were placed in 1.8 ml of 1.2 M sucrose for 20 min and then, placed on filter papers over gellan gum-solidified MS medium. The revived meristems resumed growth within 5 days and directly produced shoots. The rate of shoot formation was approximately 80% after 4 weeks. When bulb-scale segments with adventitious buds were cold-hardened at 0°C for more than 7 days before the procedure, the rates of shoot formation were significantly increased. This vitrification method was successfully applied to five other lily cultivars. Thus, this vitrification procedure for cryopreservation appears promising as a routine method for cryopreserving meristems of lily.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige & Skoog (1962) medium - PVS2 vitrification solution  相似文献   

7.
A procedure for prolonged cryogenic storage of periwinkle cell cultures is described. Cells derived from periwinkle, Catharanthus roseus (L.) G. Don, and subcultured as suspension in 1-B5C nutrient medium have been frozen, stored in liquid nitrogen (–196°C) for 11 weeks, thawed and recultured. Maximal survival was achieved when 3–4 day-old cells precultured for 24 h in nutrient medium with 5% DMSO were frozen at slow cooling rates of 0.5 or 1°C/min prior to storage in liquid nitrogen. The only loss in viability of cells occurred subsequent to treatment with DMSO. Abbreviations: DMSO, dimethylsulfoxide; 2,4-D, 2,4-dichlorophenoxyacetic acid; TTC, triphenyltetrazolium chloride.NRCC No. 20082  相似文献   

8.
Cultured cells and somatic embryos derived from the mesophyll tissue of asparagus (Asparagus officinalis L.) were cryopreserved by vitrification. The vitrification solution (PVS) contains (w/v) 22% glycerol, 15% ethylene glycol, 15% propylene glycol and 7% DMSO in Murashige-Skoog medium enriched with 0.5M sorbitol. After initial cryoprotection with sorbitol supplemented MS medium containing 12% ethylene glycol, cells or embryos were exposed stepwise to 85% PVS at 0°C. They were loaded into 0.5 ml transparent straws, and were then plunged directly into liquid nitrogen. After rapid warming, PVS was removed and diluted stepwise. The highest survivals of vitrified cells and embryos were about 65 and 50%, respectively. Surviving embryos developed into plantlets.Abbreviations DMSO dimetyl sulfoxide - PVS vitrification solution - LN liquid nitrogen - DSC differential scanning calorimeter - MS Murashige-Skoog salt medium - NAA naphthalene acetic acid - BA 6-benzyladenine  相似文献   

9.
Invitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott.) were successfully cryopreserved by vitrification. Excised shoot tips precultured on solidified MS supplemented with 0.3M sucrose and maintained under a 16 h phtoperiod at 25°C for 16 h were loaded with a mixture of 2M glycerol plus 0.4M sucrose for 20 min at 25°C. The shoot tips were then sufficiently dehydrated with a highly concentrated vitrification solution (PVS2) for 20 min at 25°C prior to immersion into liquid nitrogen. Successfully vitrified and warmed shoot tips resumed growth within 7 days and developed shoots directly without intermediate callus formation. The average rate of shoot recovery amounted to around 80%, and the vitrification protocol appeared to be very promising for the cryopreservation of taro germplasm.Abbreviations DMSO Dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS Murashige & Skoog medium (1962) - TDZ thidiazuron  相似文献   

10.
Dried axillary buds from plantlets of Asparagus lofficinalis L. grown in vitro were successfully cryopreserved. Single node segments (5mm in length) with axillary bud were taken from mature in vitro plantlets. The segments were precultured on solidfied Murashige-Skoog medium (1962) containing 0.7M sucrose at 25 °C in light for 2 days. Thereafter, these precultured segments were subjected to dehydration with silica gel at room temperature for 0 to 24 h. The axillary buds of precultured segments tolerated dehydration to about 14% water content(FW) with 50% lethality (LD50) and the threshold water content at which the dried buds remained alive after exposure to liquid nitrogen was 16.9%(LD50). The maximum rate of survival of cryopreserved buds was about 71% of untreated control. Surviving buds produced shoots and regenerated into plantlets. These results demonstrate the feasibility of cryopreserving dried axillary buds from in vitro plantlets.Abbreviations MS Murashige and Skoog medium(1962) - LN liquid nitrogen - FW fresh weight basis - LD50 the water content at 50% lethality - ABA abscisic acid - NAA -naphthalene acetic acid - BA 6-benzyladenine - DTA differential thermal analysis  相似文献   

11.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

12.
The effects of cryoprotectants, cooling rate and freezing on the mussel Mytilus galloprovincialis sperm were evaluated. At the end of each step of the experimental protocol, motility and fertilization ability of sperm were analyzed, compared to fresh semen. Five cryoprotectants were tested in their toxicity level: dimethylsulfoxide, ethylene glycol, 1-2 propylene glycol at 5%, 7%, 10%, 15% and 20% concentration; glycerol and methanol at concentration of 5%, 7% and 10%. The incubation times were 10, 20 and 30 min at 20 ± 1 °C. Only dimethylsulfoxide, ethylene glycol and 1-2 propylene glycol at 5%, 7% and 10% were chosen for the following pre-freezing step. Five adaptation/chilling rates were analyzed: 10 min at 20 ± 1, −2, −1, −0.5 and −0.25 °C/min and the last one was used for testing the best freezing procedure among seven gradients. Particularly, two rapid rates, three slow rates and two double step rates were conducted.Thawing results showed that M. galloprovincialis sperm are very sensitive to rapid pre-freezing and freezing protocols and only a slow procedure assured good motility and fertilization percentages.  相似文献   

13.
Summary Rice cells were precultured for 10 d in medium containing 60 g/L sucrose and subsequently for 1 d in medium supplemented with 0. 4 M sorbitol. After loading with 25%PVS2 at 22°C for 10 min and dehydration in 100%PVS2 at 0°C for 7. 5 min,they were plunged into liquid nitrogen directly. Survival was 45. 0 ±5.1% (based on the reduction of triphenyl tetrazolium chloride)following warming and unloading. For regrowth, cells were plated on semi-solid medium replenished with 40%(w/v) starch for 2d prior to reculture. Cell suspensions were reestablished and plants were regenerated from recovered cells. Twenty eight plants set seeds in the greenhouse.Abbreviations PVS plant vitrification solution - P preculture - LN liquid nitrogen - TTC triphenyl tetrazolium chloride - 2,4-D 2,4-dichlorophenoxyacetic acid - DMSO dimethyl sulfoxide - EG ethylene glycol - BSA bovine serum albumin  相似文献   

14.
Fusion of freely suspended protoplast mixtures (hypocotyl protoplasts of Brassica napus mixed with mesophyll protoplasts of either B. campestris or Nicotiana plumbaginifolia) was induced by a solution containing 10% polyethylene glycol, 10% dimethyl-sulfoxide and 0.1M glycine-NaOH buffer (pH 10.0). The fusion products represented 15 to 17 percent of the surviving cells. More than 50% of the fusion products divided within two days after fusion, indicating that the fusion procedure did not significantly affect the viability of fused cells. The fusion products were not bound to the surface of the fusion vessel, so they could be isolated with a micropipette immediately after fusion.Abbreviations PEG polyethylene glycol - DMSO dimethylsulfoxide  相似文献   

15.
Summary A culture line of asparagus forming green bulbous structures consisting of numerous multiple bud clusters designated bud clusters was induced from a meristem culture of asparagus (Asparagus officinalis L.cv. Hiroshimagreen, 2n=30). Small cubic segments (2 mm3) cut from bud clusters were cryopreserved using three different cryogenic protocols. Only vitrification produced very high levels of shoot formation after cooling to –196°C. Segments were treated with a vitrification solution (PVS2) at 25°C for 45 min or at 0°C for 120 min prior to a direct plunge into liquid nitrogen. After rapid warming, the segments were expelled into Murashige and Skoog medium containing 1.2 M sucrose for 10 min and then plated on agar shoot outgrowth medium. The average rate of shoot formation of vitrified segments producing normal shoots was near 90% without any preculture and/or cold-acclimation treatment. Revived segments resumed growth within 3 days and developed about three shoots per segment. In vitro-cultured bud clusters appear promising as material for cryopreserving asparagus germplasm.Abbreviations DMSO dimethyl sulfoxide - PVS 2-vitrification solution - LN liquid nitrogen - IBA 3-indolbutyric acid - BA 6-benzylaminopurine - FDA fluorescein diacetate - DSC differential scanning calorimeter  相似文献   

16.
Seeds of trifoliate orange (Poncirus trifoliata (L.) Raf.) are sensitive to desiccation, and could not withstand reduction in moisture level below 20%, whereas the excised embryonic axes could be easily desiccated to moisture levels as low as 14% without much loss in viability. Axes could be successfully cryopreserved in liquid nitrogen (–196°C) for eight months. The viable embryonic axes exhibited good growth on modified Murashige and Skoog medium supplemented wiith 1-Naphthalene acetic acid (NAA) and 6-Benzylaminopurine (BAP). Growth of cryopreserved axes was promoted in the presence of charcoal in the medium allowing for plant recovery.Abbreviations NAA Napthaleneacetic acid - BAP 6-Benzylaminopurine - MS Murashige and Skoog (1962) - LN Liquid nitrogen  相似文献   

17.
Seeds of trifoliate orange (Poncirus trifoliata (L.) Raf.) are sensitive to desiccation, and could not withstand reduction in moisture level below 20%, whereas the excised embryonic axes could be easily desiccated to moisture levels as low as 14% without much loss in viability. Axes could be successfully cryopreserved in liquid nitrogen (–196°C) for eight months. The viable embryonic axes exhibited good growth on modified Murashige and Skoog medium supplemented with 1-Naphthalene acetic acid (NAA) and 6-Benzylaminopurine (BAP). Growth of cryopreserved axes was promoted in the presence of charcoal in the medium allowing for plant recovery.Abbreviations NAA Napthaleneacetic acid - BAP 6-Benzylamino-purine - MS Murashige and Skoog (1962) - LN Liquid nitrogen  相似文献   

18.
Embryogenic suspension cells of two commercially cultivated aromatic Indica rice varieties, Basmati 385 and Pusa Basmati 1, were cryopreserved using a simple one-step freezing procedure that does not require a controlled-rate freezer. The procedure involves osmotic pre-conditioning of cells with mannitol, addition of a cryoprotectant solution consisting of sucrose, dimethyl sulfoxide, glycerol, proline, and modified R2 medium, cooling to –25°C for 2 h in a freezer, and then storage in liquid nitrogen. After rapid thawing at 45°C, these cultures showed post-thaw cell viability of 5.6 to 10.5% and formed actively dividing, readyto-use cell suspensions in 20–35 d when cultured directly into liquid medium. Plants were regenerated from cell clumps as well as from colonies formed by protoplasts that were isolated from suspension cells re-established from cryopreserved cells, with frequencies higher (54–98%) than, or comparable to, those obtained from three to four-month-old original non-frozen cell cultures. Cell viability and regeneration frequencies of post-thawed Pusa Basmati 1 cultures were similar to those obtained from the suspension cells cryopreserved using the conventional slow-freezing procedure which involves pre-freezing cells to –40°C at the rate of –0.2°C per min prior to immersion in liquid nitrogen. In Basmati 385, however, cells frozen at ––25°C showed lower post-thaw cell viability than those preserved using the slow-freezing procedure, but these cells produced cell suspensions that had greater shoot morphogenetic potential. The study indicates the beneficial effect of this simple freezing procedure, not only for preserving desirable cultured cells but also for an enrichment of embryogenic cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DMSO dimethylsulfoxide - LN liquid nitrogen - MS Murashige and Skoog (1962) medium - NAA -napthaleneacetic acid - pcv packed cell volume - TTC 2,3,5-triphenyltetrazolium chloride  相似文献   

19.
Suspension cultured cells of nucellar callus of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) were successfully cryopreserved. The nucellar cells were cryoprotected in Murashige-Tucker basal medium supplemented with 5% DMSO+1.2 M sucrose in an ice bath for 1 h, and then were frozen in this solution at a cooling rate of 0.5°C/min to –40°C prior to immersion in LN2. After rapid thawing in a +40°C water bath, regrowth was achieved by transferring the treated cells, without washing, onto filter paper discs over nutrient media solidified with agar. The viability after thawing, as evaluated by FDA and phenosafranine double staining, was about 70% of controls. The revived cells resumed growth within 3 days and produced cotyledonary embryos that developed into plants within 2 to 6 months of culture. Plants regenerated from cryopreserved cells were morphologically uniform and had the characteristics typical of navel orange.Abbreviations BA 6-benzyladenine - DMSO dimethylsulfoxide - FDA fluorescein diacetate - LN2 liquid nitrogen - NAA -naphthaleneacetic acid - SE standard error  相似文献   

20.
Successful regeneration of cotton (Gossypium hirsutum L.) plants from cryopreserved embryogenic callus and cell suspension cultures is described. The cryoprotectant mixture consisting of a modified Murashige and Skoog (1962) medium with sucrose (5% w/v), DMSO (5% v/v) and glycerol (5% v/v) gave the highest survival rate (70%) from cell suspension cultures cryopreserved in liquid nitrogen after slow cooling (0.5 to 1.0°C/min). A cooling rate of 0.5°C/min provided a satisfactory recovery rate (30%) from cryopreserved embryogenic callus cultures and was superior to a cooling rate of 1°C/min. Regenerated plants from cell suspension and embryogenic callus cultures cryopreserved for more than four years exhibited normal morphology, growth and boll set upon transfer to soil.Abbreviations DMSO dimethylsulfoxide - MS Murashige and Skoog (1962) - MMS modified MS - NAA -naphthaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号