首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stoimenova  M.  Libourel  I.G.L.  Ratcliffe  R.G.  Kaiser  W.M. 《Plant and Soil》2003,253(1):155-167
The effects of root anoxia on a tobacco (Nicotiana tabacum) wild type (WT) and a transformant (LNR-H) lacking root nitrate reductase were compared. LNR-H plants were visibly more sensitive to oxygen deprivation than WT, showing rapid and heavy wilting symptoms. LNR-H roots also produced substantially more ethanol and lactate than WT roots under anoxia, and their sugar and sugar-P content, as well as their ATP levels, remained higher. The fermentation rates of WT and LNR-H roots were unaffected by sugar feeding and the higher fermentation rate in the LNR-H roots was associated with a greater acidification of the cytoplasm under anoxia. From these observations it is concluded: (i) that the absence of NR activity in the LNR-H roots does not necessarily limit NADH recycling; and (ii) that nitrate reduction in the WT roots results in a more acidifying metabolism. It is the higher metabolic rate in the LNR-H roots that leads to the greater cytoplasmic acidification under anoxia despite the absence of a contribution from the metabolism of nitrate. Competition for NADH cannot explain this difference in metabolic rate, and it remains unclear why the NR-free LNR-H, and tungstate-treated WT roots, had much higher fermentation rates than WT roots. The difference in anaerobic metabolism could still be due to the presence or absence of nitrate reductase and the possibility that this could occur through the production of nitric oxide is discussed.  相似文献   

3.
Dissimilatory nitrate reduction in Clostridium tertium.   总被引:1,自引:0,他引:1  
Fermentation balance studies were carried out on Clostridium tertium grown with and without nitrate in the medium. Nitrate reduction increased the efficiency of energy produced from glucose by permitting the utilization of additional sites of substrate level phosphorylation. The effect was even more dramatic in C. tertium than in C. perfringens, with increased cell yields of about 30% being observed in the former compared with 20% in the latter. Unlike C. perfringens, C. tertium responded to the presence of nitrate in the medium with an increased growth rate. A slight increase in the Y ATP of these cultures was also observed, and quantitatively, this appeared to be consistent with the prediction of Stouthammer and Bettenhaussen that Y ATP will vary with the growth rate. Thus, C. tertium, like C. perfringens, was able to use nitrate as an electron acceptor in conjunction with its energy metabolism, suggesting that this may be widespread among the nitrate-reducing anaerobes.  相似文献   

4.
Summary The first aim of the investigations made has been the determination of the fate of glucose as a hydrogen donator in the dissimilatory nitrate reduction byPseudomonas aeruginosa. The carbon balances made are strongly in favour of the view that the part of the glucose consumed which is not converted into cell material is completely converted into carbon dioxide and water. This conclusion is supported by the simultaneously made nitrogen and oxidoreduction balances. The result should be considered as a confirmation of a widely hold belief for which, however, until now experimental evidence was practically lacking.  相似文献   

5.
Dissimilatory nitrate reduction by Propionibacterium acnes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

6.
7.
8.
9.
Market is increasingly demanding vegetables with high quality and nutraceutical characteristics. It was demonstrated that leafy vegetables can get benefit from biostimulants, for the reduction of nitrate concentration and the increment of antioxidants, with potential benefit for human health. The research purpose was to investigate on the role of a novel plant-based biostimulant in affecting nitrogen and carbon metabolism in wild rocket (Diplotaxis tenuifolia L.). Foliar spray treatments were performed with extracts obtained from borage (Borago officinalis L.) leaves and flowers. To evaluate the treatments effect, in vivo determinations (chlorophyll a fluorescence and chlorophyll content) were performed. At harvest, nitrate concentration, sucrose, total sugars, chlorophyll, and carotenoids levels were measured in leaves. In order to characterize the mechanism of action also at molecular level, a set of genes encoding for some of the key enzymes implicated in nitrate and carbon metabolism was selected and their expression was measured by qRT-PCR. Interesting results concerned the increment of sucrose, coherent with a high value of Fv/Fm, in addition to a significant reduction of nitrate and ABA than control, and an enhanced NR in vivo activity. Also, genes expression was influenced by extracts, with a more pronounced effect on N related genes.  相似文献   

10.
Stoimenova  M.  Hänsch  R.  Mendel  R.  Gimmler  H.  Kaiser  W.M. 《Plant and Soil》2003,253(1):145-153
Two tobacco lines with (Nicotiana tabacum cv. Gatersleben, WT) or without (transformant LNR-H) nitrate reductase in roots were chosen as model systems to re-evaluate the role of root nitrate reduction for survival of anoxia. In this first paper, the two hydroponically grown lines were compared with respect to their root morphology, root respiration and the root content of inorganic cations, anions, and metabolites. Leaf transpiration in relation to root morphology was also determined. In comparison to WT roots containing NR, the NR-free LNR-H transformants had slightly shorter and thicker roots with a lower root surface area per g leaf FW. Consistent with that, LNR-H leaves had lower transpiration rates than WT. LNR-H-roots also showed consistently higher respiration and higher contents of ATP, starch and hexose monophosphates than WT roots. Concentrations of free sugars were only slightly higher in LNR-H roots. Total soluble protein content was identical in both lines, whereas amino acids were higher in LNR-H. Contents of major inorganic cations and anions were also almost identical in both lines. We conclude that WT versus LNR-H plants are a suitable tool to re-evaluate the role of nitrate reduction in flooding tolerance.  相似文献   

11.
Fermentation-balance studies have been carried out on Clostridium perfringens grown in the presence and absence of nitrate in the medium. Nitrate is able to serve as an electron acceptor for these bacteria, permitting increased growth yields over those obtained in its absence. This increase is due to an increase in the proportion of metabolite molecules which can participate in substrate-level phosphorylation reactions when an inorganic acceptor is available. The nitrate reduction can be regarded as a primitive form of anaerobic respiration in these bacteria, since it is clearly coupled to their energy metabolism and is not assimilative in function. We believe that the existence of this kind of energy metabolism in these bacteria has significant evolutionary implications.  相似文献   

12.
13.
14.
The effects of NO?3 and NH+4 nutrition on the rates of dark incorporation of inorganic carbon by roots of hydroponically grown Zea mays L. cv. 712 and on the metabolic products of this incorporation, were determined in plants supplied with NaH14CO3 in the nutrient solution. The shoots and roots of the plants supplied with NaH14CO3 in the root medium for 30 min were extracted with 80%; (v/v) ethanol and fractionated into soluble and insoluble fractions. The soluble fraction was further separated into the neutral, organic acid, amino acid and non-polar fractions. The amino acid fraction was then analyzed to determine quantities and the 14C content of its individual components. The rates of dark incorporation of inorganic carbon calculated from H14CO?3 fixation and attributable to the activity of phosphoenolpyuvate carboxylase (EC 4.1.1.31), were 5-fold higher in ammonium-fed plants than in nitrate-fed plants after a 30-min pulse of 14C. This activity forms a small, but significant component of the carbon budget of the root. The proportion of 14C located in the shoots was also significantly higher in ammonium-fed plants than in nitrate-fed plants, indicating more rapid translocation of the products of dark fixation to the shoots in plants receiving NH+/sp4 nutrition. Ammonium-fed plants favoured incorporation of 14C into amino acids, while nitrate-fed plants allocated relatively more 14C into organic acids. The amino acid composition was also dependent on the type of nitrogen supplied, and asparagine was found to accumulate in ammonium-fed plants. The 14C labelling of the amino acids was consistent with the diversion of 14C-oxaloacetate derived from carboxlyation of phosphoenolpyruvate into the formation of both asparatate and glutamate. The results support the conclusion that inorganic carbon fixation in the roots of maize plants provides an important anaplerotic source of carbon for NH+4 assimilation.  相似文献   

15.
Endogenous nitrate loss as an assay for nitrate reduction in vivo   总被引:2,自引:0,他引:2  
An in vivo assay method for nitrate reduction is proposed, based on the use of endogenous nitrate rather than on the accumulation of nitrite. Loss of endogenous nitrate and accumulation of nitrite were studied in barley (Hordeum vulgare L. cv. Gars Clipper ex Napier) leaves. Leaf sections were incubated in the dark in a gaseous environment of air or N2. Nitrate disappeared under both conditions, the highest loss being observed in tissue under anaerobiosis. Nitrite accumulated only in leaf sections under anaerobiosis, but the amount of nitrite accumulated was much lower than the amount of nitrate lost. A comparative study of the capacity of barley leaf sections to use endogenous nitrate and accumulate nitrite showed that both activities were dependent on temperature in a manner characteristic of enzymatic reactions. Disappearance of endogenous nitrate increased with increasing levels of nitrate in the tissue.  相似文献   

16.
Tungstate prevented the formation of active nitrate reductase in growing rumen bacteria capable of nitrate reduction, but did not directly inhibit the enzyme activity of all strains tested.  相似文献   

17.
The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.  相似文献   

18.
19.
Wheat leaves exposed to 710 nm monochromatic light, when only photosystem 1 operates, reduced small but significant amount of nitrate to nitrite. This could be due to partial inhibition of mitochondrial oxidation of NADH, brought about by cyclic photo-phosphorylation. Under dark aerobic conditions, citric acid cycle intermediates only slightly stimulated nitrate reduction. Under dark anaerobic conditions, when maximum reduction of nitrate occurred, the time course showed a 1:1 stoichiometry between nitrite and CO2. It is suggested that for maximum reduction of nitrate under physiological conditions, CO2 fixation and export of ATP via triose phosphate shuttle is essential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号