首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a continuing search for better ways to use existing drugs against human immunodeficiency virus (HIV). One idea is to use short therapy interruptions to "autovaccinate" HIV-infected patients. A group of 13 chronically HIV-infected patients enrolled in a trial of such so-called structured treatment interruptions (STIs) were intensively studied with respect to their viral load (VL) and HIV-specific CD8+ T-cell (cytotoxic T-lymphocyte [CTL]) responses. We found that 10 of the 13 patients had plateau VLs after STIs that were lower than their pretreatment VLs. While viral rebound rates became lower over STIs, there were no changes in clearance rates. Although numbers of CTLs did increase over the same time that viral rebounds decreased, there was no correlation between CTL count and either viral rebound rates or clearance rates. Finally, we asked whether absolute numbers of or changes in numbers of CTLs predict plateau VLs after STIs. No measure of CTLs was able to predict plateau VLs. Thus, there was no signature in these data of an important contribution to virological control from HIV-specific CD8+ T lymphocytes.  相似文献   

2.
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1)-infected subjects treated early after infection have preserved HIV-1-specific CD4+ T-cell function. We studied the effect of highly active antiretroviral therapy (HAART) on the frequency of HIV-1-specific CD8+ T cells in patients treated during early (n = 31) or chronic (n = 23) infection. The degree of viral suppression and time of initiation of treatment influenced the magnitude of the CD8+ T-cell response. HIV-1-specific CD8+ T cells can increase in number after HAART in subjects treated early after infection who have episodes of transient viremia.  相似文献   

4.
Although antiviral agents which block human immunodeficiency virus (HIV) replication can result in long-term suppression of viral loads to undetectable levels in plasma, long-term therapy fails to eradicate virus, which generally rebounds after a single treatment interruption. Multiple structured treatment interruptions (STIs) have been suggested as a possible strategy that may boost HIV-specific immune responses and control viral replication. We analyze viral dynamics during four consecutive STI cycles in 12 chronically infected patients with a history (>2 years) of viral suppression under highly active antiretroviral therapy. We fitted a simple model of viral rebound to the viral load data from each patient by using a novel statistical approach that allows us to overcome problems of estimating viral dynamics parameters when there are many viral load measurements below the limit of detection. There is an approximate halving of the average viral growth rate between the first and fourth STI cycles, yet the average time between treatment interruption and detection of viral loads in the plasma is approximately the same in the first and fourth interruptions. We hypothesize that reseeding of viral reservoirs during treatment interruptions can account for this discrepancy, although factors such as stochastic effects and the strength of HIV-specific immune responses may also affect the time to viral rebound. We also demonstrate spontaneous drops in viral load in later STIs, which reflect fluctuations in the rates of viral production and/or clearance that may be caused by a complex interaction between virus and target cells and/or immune responses.  相似文献   

5.
CD4+ regulatory T cells (Tregs) are essential for the maintenance of the immune system''s equilibrium, by dampening the activation of potential auto-reactive T cells and avoiding excessive immune activation. To correctly perform their function, Tregs must be maintained at the right proportion with respect to effector T cells. Since this equilibrium is frequently disrupted in individuals infected with the human immunodeficiency virus (HIV), we hypothesize that its deregulation could hamper immune reconstitution in patients with poor CD4+ T cell recovery under highly active antiretroviral therapy (HAART). We analysed Tregs percentages amongst CD4+ T cells in 53 HIV-infected patients under HAART, with suppression of viral replication and distinct levels of immune reconstitution. As controls, 51 healthy individuals were also analysed. We observed that amongst the patients with Nadir values (the lowest CD4+ T cell counts achieved) <200 cells/µL, the individuals with high Tregs percentages (≥10% of total CD4+ T cells) had the worse CD4+ T cell reconstitution. In accordance, the well-described direct correlation between the Nadir value and CD4+ T cell reconstitution is clearly more evident in individuals with high Tregs proportions. Furthermore, we observed a strong negative correlation between Tregs percentages and CD4+ T cell recovery among immunological non-responder HIV+ individuals. All together, this work shows that high Tregs frequency is an important factor associated with sub-optimal CD4+ T cell recovery. This is particularly relevant for immunological non-responders with low Nadir values. Our results suggest that the Tregs proportion might be of clinical relevance to define cut-offs for HAART initiation.  相似文献   

6.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

7.

Introduction

The profile of immune activation markers in tuberculosis and HIV-infected patients is already known. The impact of simultaneous infections on the immune parameters is still not fully explored.

Methods

We conducted a prospective study to estimate trajectories of activated T cell subsets and the profile of anti- and pro-inflammatory cytokines in a group of HIV-TB individuals, previously naïve for HAART, recruited from a randomized clinical trial during TB treatment and first antiretroviral therapy with efavirenz. Patients were evaluated according to the immunosuppression levels at baseline as group 1 (CD4<200 cells/mm3) and group 2 (CD4>200 cells/mm3). These parameters were measured at the time of HAART initiation (started about 30 days after the onset of TB treatment) and at the follow-up visits after 30, 60, 90 and 180 days. Trajectories were estimated using least squares estimates of the coefficients of a restricted cubic spline function in time after adjusting for subject effects, bootstrapping it 500 times.

Results

Increase of CD4 T cell counts and suppression of HIV viral load were observed for all patients under HAART and TB treatment. Descendent trajectories were observed for the activated CD8+/CD38+ and CD3+/HLA-DR+ T cell subsets, and for plasma concentration of gamma- interferon (IFN-γ). Except for TNF-α and IL-2 discrete variations were observed for the other cytokines. Differences in the trajectories of these parameters were observed for groups 1 and 2. Higher values of IFN-γ, IL-2, IL-6 and IL-10 were observed for group 1 from the baseline to two months after treatment initiation, whereas reduced levels of TNF-α were observed for this group between 60 and 120 days of HAART.

Conclusion

Independent of the immunosuppression profile at baseline, HIV-TB patients under HAART were able to recover the CD4+ T cell counts, and control viral replication and immune activation parameters over time.  相似文献   

8.
Virus-specific CD8+ T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206–216 and Gag241–249 epitope-specific CD8+ T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8+ T-cell responses induced in all the 90-120-Ia+ macaques on SIV replication remains unknown. Here, we identified three CD8+ T-cell epitopes, Nef9–19, Nef89–97, and Nef193–203, associated with 90-120-Ia. Nef9–19 and Nef193–203 epitope-specific CD8+ T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8+ T cells, indicating that these CD8+ T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.  相似文献   

9.
Immune control of human immunodeficiency virus (HIV) is not restored by highly active antiretroviral therapies (HAART) during chronic infection. We examined the capacity of repeated structured therapeutic interruptions (STI) to restore HIV-specific CD4 and CD8 T-cell responses that controlled virus production. Eleven STI (median duration, 7 days; ranges, 4 to 24 days) were performed in three chronically HIV-infected patients with CD4 counts above 400/mm(3) and less than 200 HIV RNA copies/ml after 18 to 21 months of HAART; treatment resumed after 1 week or when virus became detectable. HIV-specific T-cell responses were analyzed by proliferation, gamma interferon (IFN-gamma) production, and enzyme-linked immunospot assays. Seven virus rebounds were observed (median, 4,712 HIV-1 RNA copies/ml) with a median of 7 days during which CD4 and CD8 counts did not significantly change. After treatment resumed, the viral load returned below 200 copies/ml within 3 weeks. Significant CD4 T-cell proliferation and IFN-gamma production against HIV p24 appeared simultaneously with or even before the virus rebounds in all patients. These CD4 responses lasted for less than 3 weeks and disappeared before therapeutic control of the virus had occurred. Increases in the numbers of HIV-specific CD8 T cells were delayed compared to changes in HIV-specific CD4 T-cell responses. No delay or increase in virus doubling time was observed after repeated STI. Iterative reexposure to HIV during short STI in chronically infected patients only transiently mobilized HIV-specific CD4 T1-helper cells, which might be rapidly altered by virus replication. Such kinetics might explain the failure at delaying subsequent virus rebounds and raises concerns about strategies based on STI to restore durable HIV-specific T-cell responses in chronic HIV infection.  相似文献   

10.
CD8+ T cells are the main effector lymphocytes in the control of hepatitis B virus (HBV) infection. However, limitations of model systems, such as low infection rates, restrict mechanistic studies of HBV-specific CD8+ T cells. Here, we established a novel immunological cell culture model based on HBV-infected HepG2hNTCP cells that endogenously processed viral antigens and presented them to HBV-specific CD8+ T cells. This induced cytolytic and noncytolytic CD8+ T-cell effector functions and reduction of viral loads.  相似文献   

11.
Control of HIV replication is a rare immunological event, providing clues to understand the viral control mechanism. CD8+ T-cell responses are crucial for virus control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Here, we describe lasting SIV containment in a macaque AIDS model. Analysis of ten rhesus macaques that controlled viremia for 2 years post-infection found accumulation of proviral gag and nef CD8+ T-cell escape mutations in four of them. These four controllers mounted CD8+ T cells targeting Gag, Nef, and other viral proteins at 4 months, suggesting that broadening of CD8+ T-cell targets can be an indicator of the beginning of viral control failure. The remaining six aviremic SIV controllers, however, harbored proviruses without mutations and showed no or little broadening of their CD8+ T-cell responses in the chronic phase. Indeed, three of the latter six exhibiting no change in CD8+ T-cell targets showed gradual decreases in SIV-specific CD8+ T-cell frequencies, implying a concomitant reduction in viral replication. Thus, stability of the breadth of virus-specific CD8+ T-cell responses may represent a status of lasting HIV containment by CD8+ T cells.  相似文献   

12.
The purpose of this study was to investigate strategies in the monotherapy treatment of HIV infection in the presence of drug-resistant (mutant) strains. A mathematical system is developed to model resistance in HIV chemotherapy. It includes the key players in the immune response to HIV infection: virus and both uninfected CD4+ and infected CD4+ T-cell populations. We model the latent and progressive stages of the disease, and then introduce monotherapy treatment. The model is a system of differential equations describing the interaction of two distinct classes of HIV—drug-sensitive (wild type) and drug-resistant (mutant)—with lymphocytes in the peripheral blood. We then introduce chemotherapy effects. In the absence of treatment, the model produces the three types of qualitative clinical behavior—anuninfected steady state, andinfected steady state (latency), andprogression to AIDS. Simulation of treatment is provided for monotherapy, during theprogression to AIDS state, in the consideration of resistance effects. Treatment benefit is based on an increase or retention in CD4+ T-cell counts together with a low viral titer. We explore the following treatment approaches: an antiviral drug which reduces viral infectivity that is administered early—when the CD4+ T-cell count is ≥300/mm3, and late—when the CD4+ T-cell count is less than 300/mm3. We compare all results with data. When treatment is initiated during the progression to AIDS state, treatment prevents T-cell collapse, but gradually loses effectiveness due to drug resistance. We hypothesize that it is the careful balance of mutant and wild-type HIV strains which provides the greatest prolonged benefit from treatment. This is best achieved when treatment is initiated when the CD4+ T-cell counts are greater than 250/mm3, but less than 400/mm3 in this model (i.e. not too early, not too late). These results are supported by clinical data. The work is novel in that it is the first model to accurately simultate data before, during and after monotherapy treatment. Our model also provides insight into recent clinical results, as well as suggests plausible guidelines for clinical testing in the monotherapy of HIV infection.  相似文献   

13.
For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8+ T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8+ T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8+ T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8+ T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8+ T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8+ T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8+ T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8+ T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8+ T-cell responses by prophylactic AIDS vaccines.  相似文献   

14.
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.  相似文献   

15.

Background

T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure.

Methods

The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production.

Results

CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control.

Conclusion

HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation.  相似文献   

16.
A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients.  相似文献   

17.
HIV-1 evolved from SIV during cross-species transmission events, though viral genetic changes are not well understood. Here, we studied the evolution of SIVcpzLB715 into HIV-1 Group M using humanized mice. High viral loads, rapid CD4+ T-cell decline, and non-synonymous substitutions were identified throughout the viral genome suggesting viral adaptation.  相似文献   

18.
In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8(+) T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8(+) T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4(+) T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8(+) T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted.  相似文献   

19.
HIV-1 evolved from its progenitor SIV strains, but details are lacking on its adaptation to the human host. We followed the evolution of SIVcpz in humanized mice to mimic cross-species transmission. Increasing viral loads, CD4+ T-cell decline, and non-synonymous mutations were seen in the entire genome reflecting viral adaptation.  相似文献   

20.
Elite suppressors (ES) are human immunodeficiency virus type 1 (HIV-1)-infected patients who maintain viral loads of <50 copies/ml without treatment. The observation that the HLA-B*57 allele is overrepresented in these patients implies that HIV-1-specific CD8+ T cells play a key role in suppressing viral replication. We have previously shown that while CD8+ T-cell escape mutations are rarely seen in proviral Gag sequences in resting CD4+ T cells from peripheral blood, they are present in every clone amplified from the low levels of free virus in the plasma of HLA-B*57+ ES. In this study, we compared the pattern of mutations in Nef sequences amplified from peripheral blood CD4+ T cells and from plasma virus. We show that Nef mutations are present in plasma virus but are rare in the cellular sequences and provide evidence that these plasma Nef variants represent novel escape mutants. The results provide further evidence of CD8+ T-cell-mediated selective pressure on plasma virus in ES and suggest that there must be ongoing HIV-1 replication in spite of the very low viral loads seen for these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号