共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have shown that the serine/threonine protein phosphatase 2A (PP2A) associates with the Jak2 tyrosine kinase in a myeloid progenitor line. In this study, we characterized the regions of Jak2 and PP2A responsible for association and evaluated the functional consequences of association. We demonstrate that PP2A interacts with truncated forms of Jak2 containing the JH1 catalytic domain. Using GST fusion proteins, we show that the isolated JH1 and JH3 domains of Jak2 bind directly to PP2A. Jak2 contains putative PP2A binding sequences (LXXLL) in the JH1 domain (residues 1078-1082) and in the JH3 domain (residues 474-478). Mutation of the LXXLL sequence in the JH1 domain decreased PP2A binding in vitro, while mutation of the similar JH3 sequence did not affect PP2A binding. We analyzed full-length Jak2 bearing the LXXLL mutation in Cos-7 cells for association with PP2A. The JH1 mutation impaired Jak2 activity and had a modest effect on PP2A binding. Finally, we show that a mutant form of the PP2A catalytic subunit lacking a site for phosphorylation (Y307F) binds more tightly to Jak2 than wild-type PP2A, consistent with a model where phosphorylation disrupts the Jak2-PP2A interaction. 相似文献
3.
Schild A Ittner LM Götz J 《Biochemical and biophysical research communications》2006,343(4):1171-1178
Protein phosphatase 2A (PP2A) is a family of heterotrimeric enzymes with diverse functions under physiologic and pathologic conditions such as Alzheimer's disease. All PP2A holoenzymes have in common a catalytic subunit C and a structural scaffolding subunit A. These core subunits assemble with various regulatory B subunits to form heterotrimers with distinct functions in the cell. Substrate specificity of PP2A in vitro is determined by regulatory subunits with leucine 309 of the catalytic subunit C playing a crucial role in the recruitment of regulatory subunits into the complex. Here we expressed a mutant form of Calpha, L309A, in brain and Harderian (lacrimal) gland of transgenic mice. We found an altered recruitment of regulatory subunits into the complex, demonstrating a role for the carboxyterminal leucine of Calpha in regulating holoenzyme assembly in vivo. This was associated with an increased phosphorylation of tau in brain and an impaired dephosphorylation of vimentin demonstrating that both cytoskeletal proteins are in vivo substrates of distinct PP2A holoenzyme complexes. 相似文献
4.
It is well established that HCV NS5A protein when expressed in mammalian cells perturbs the extracellular signal regulated kinase (ERK) pathway. The protein serine/threonine phosphatase 2A controls the phosphorylation of numerous proteins involved in cell signaling and one characterized function is the regulation of Ras-Raf mitogen activated protein (MAP) kinase signaling pathways. Our results showed that expression of HCV NS5A protein stimulates phosphatase 2A (PP2A) activity in cells, indicating the relevance of NS5A as a regulator of PP2A in vivo. We found that transient expression of the full length NS5A protein in different cell lines leads to a significant increase of the PP2A activity and this activity is specifically inhibited by the addition of okadaic acid, a PP2A inhibitor, in living cells. Further investigation showed that NS5A protein interacts in vivo and in vitro with the scaffolding A and the catalytic C subunits of PP2A. We propose that HCV NS5A represents a viral PP2A regulatory protein. This is a novel function for the NS5A protein which may have a key role in the ability of the virus to deregulate cell growth and survival. 相似文献
5.
Sucrose-phosphate synthase (SPS) purified from spinach leaves harvested in the dark, was activated by mammalian protein phosphatase 2A (PP2A). Activation of SPS in a fraction from darkened spinach leaves was largely prevented by either okadaic acid or microcystin-LR (specific inhibitors of PP1 and PP2A), while inhibitor-2 (a PP1 inhibitor) or Mg2+ (essential for PP2C) were ineffective. In vivo, okadaic add and microcystin-LR prevented the light-induced activation of SPS and decreased sucrose biosynthesis and CO2 fixation. It is concluded that PP2A is the major SPS phosphatase in spinach. This study is the first to employ microcystin-LR for modulating protein phosphorylation in vivo. 相似文献
6.
7.
Jangati GR Veluthakal R Kowluru A 《Biochemical and biophysical research communications》2006,348(2):649-652
The sphingolipid ceramide (CER) and its metabolites have been recognized as important mediators of signal transduction processes leading to a variety of cellular responses, including survival and demise via apoptosis. Accumulating evidence implicates key regulatory roles for intracellularly generated CER in metabolic dysfunction of the islet beta cell. We have previously reported localization of an okadaic (OKA)-sensitive CER-activated protein phosphatase (CAPP) in the islet beta cell. We have also reported immunological identification of the structural A subunit, the regulatory B56alpha subunit, and the catalytic C subunit for CAPP holoenzyme complex in insulin-secreting INS-1 cells. Herein, we provide the first evidence to suggest that siRNA-mediated knockdown of the alpha isoform of the catalytic subunit of PP2Ac (PP2Acalpha) markedly reduces the CAPP activity in INS 832/13 cells. Potential significance of the functional activation of CAPP holoenzyme in the context of lipid-and glucose-induced metabolic dysfunction of the islet beta cell is discussed. 相似文献
8.
Evans BJ Wang Z Mobley L Khosravi D Fujii N Navenot JM Peiper SC 《Biochemical and biophysical research communications》2008,377(4):1067-1071
KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates. 相似文献
9.
The cell-cell adhesion molecule E-cadherin is stabilized by linking intracellularly with the actin cytoskeleton through PP2A-mediated recruitment of IQGAP1 to Rac1-bound E-cadherin-catenins complex in nonmalignant HME cells. However, little is known about the dysfunction of E-cadherin by loss or reduced expression of PP2A in human breast cancer cells. We report here that both human breast cancer MDA-MB-231 and MCF-7 cells were deficient in expression of the PP2A-A protein and lost the IQGAP1 recruitment to Rac1-bound catenins. In MDA-MB-231 cells, E-cadherin was also deficient. Immunohistochemical analysis of the normal-carcinoma matched human breast tissue arrays revealed that PP2A-A was expressed in 96% of normal tissue specimens but not in 57% of carcinoma specimens. Expression of E-cadherin in MCF-7 cells was 1.5-fold higher than that in HME cells, however, 80% of E-cadherin was endocytosed and incompletely anchored to F-actin. Therefore, we propose that the dysfunction of E-cadherin due to its endocytosis may occur in some proportion of human breast carcinomas in which the PP2A-A protein is lost or significantly reduced. 相似文献
10.
Goedert M Satumtira S Jakes R Smith MJ Kamibayashi C White CL Sontag E 《Journal of neurochemistry》2000,75(5):2155-2162
Coding region and intronic mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We have previously reported that ABalphaC, a major form of protein phosphatase 2A (PP2A) in brain, binds tightly to tau protein in vitro and is a major tau phosphatase in vivo. Using in vitro assays, we show here that the FTDP-17 mutations G272V, DeltaK280, P301L, P301S, S305N, V337M, G389R, and R406W inhibit by approximately 20-95% the binding of recombinant three-repeat and four-repeat tau isoforms to the ABalphaC holoenzyme and the AC core enzyme of PP2A. Reduction in binding was maximal for tau proteins with the G272V, DeltaK280, and V337M mutations. We also show that tau protein can be specifically coimmunoprecipitated with endogenous PP2A from both rat brain and transfected cell extracts. It is significant that, by using similar coimmunoprecipitation assays, we show that all FTDP-17 mutations tested, including the N279K mutation, alter the ability of tau to associate with cellular PP2A. Taken together, these results indicate that FTDP-17 mutations induce a significant decrease in the binding affinity of tau for PP2A in vivo. We propose that altered protein-protein interactions between PP2A and tau may contribute to FTDP-17 pathogenesis. 相似文献
11.
Yu ZH Chen L Wu L Liu S Wang L Zhang ZY 《Bioorganic & medicinal chemistry letters》2011,21(14):4238-4242
SHP2, encoded by PTPN11, is a non-receptor protein tyrosine phosphatase (PTP) containing two tandem Src homology-2 (SH2) domains. It is expressed ubiquitously and plays critical roles in growth factor mediated processes, primarily by promoting the activation of the RAS/ERK signaling pathway. Genetic and biochemical studies have identified SHP2 as the first bona fide oncoprotein in the PTP superfamily, and a promising target for anti-cancer and anti-leukemia therapy. Here, we report a structure-based approach to identify SHP2 inhibitors with a novel scaffold. Through sequential virtual screenings and in vitro inhibition assays, a reversible competitive SHP2 inhibitor (C21) was identified. C21 is structurally distinct from all known SHP2 inhibitors. Combining molecular dynamics simulation and binding free energy calculation, a most likely binding mode of C21 with SHP2 is proposed, and further validated by site-directed mutagenesis and structure-activity relationship studies. This binding mode is consistent with the observed potency and specificity of C21, and reveals the molecular determinants for further optimization based on the new scaffold. 相似文献
12.
Mohd-Pahmi SH Hussein WM Schenk G McGeary RP 《Bioorganic & medicinal chemistry letters》2011,21(10):3092-3094
Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. Based on a previous lead compound and rational drug design, acyl derivatives of α-aminonaphthylmethylphosphonic acid were synthesised and tested as PAP inhibitors. Kinetic analysis showed that they are good PAP inhibitors whose potencies improve with increasing acyl chain length. Maximum potency is reached when the number of carbons in the acyl chain is between 12 and 14. The most potent inhibitor of red kidney bean PAP is the dodecyl-derivative with Kic = 5 μM, while the most potent pig PAP inhibitor is the tetradecyl-derivative with Kic = 8 μM, the most potent inhibitor of a mammalian PAP yet reported. 相似文献
13.
Fukunaga K Muller D Ohmitsu M Bakó E DePaoli-Roach AA Miyamoto E 《Journal of neurochemistry》2000,74(2):807-817
Using autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) as substrate, we now find that long-term potentian (LTP) induction and maintenance are also associated with a significant decrease in calyculin A-sensitive protein phosphatase (protein phosphatase 2A) activity, without changes in Mg2+-dependent protein phosphatase (protein phosphatase 2C) activity. This decrease in protein phosphatase 2A activity was prevented when LTP induction was inhibited by treatment with calmidazolium or D-2-amino-5-phosphonopentanoic acid. In addition, the application of high-frequency stimulation to 32P-labeled hippocampal slices resulted in increases in the phosphorylation of a 55-kDa protein immunoprecipitated with anti-phosphatase 2A antibodies. Use of a specific antibody revealed that the 55-kDa protein is the B'alpha subunit of protein phosphatase 2A. Following purification of brain protein phosphatase 2A, the B'alpha subunit was phosphorylated by CaM kinase II, an event that led to the reduction of protein phosphatase 2A activity. These results suggest that the decreased activity in protein phosphatase 2A following LTP induction contributes to the maintenance of constitutively active CaM kinase II and to the long-lasting increase in phosphorylation of synaptic components implicated in LTP. 相似文献
14.
Kali Charan Gulipalli Srinu Bodige Parameshwar Ravula Srinivas Endoori Nareshvarma Seelam 《Bioorganic & medicinal chemistry letters》2017,27(15):3558-3564
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM. 相似文献
15.
Kovacech B Kontsekova E Zilka N Novak P Skrabana R Filipcik P Iqbal K Novak M 《FEBS letters》2007,581(4):617-622
Abnormal phosphorylation of tau protein represents one of the major candidate pathological mechanisms leading to Alzheimer's disease (AD) and related tauopathies. Altered phosphorylation status of neuronal tau protein may result from upregulation of tau-specific kinases or from inhibition of tau-specific phosphatases. Increased expression of the protein inhibitor 1 of protein phosphatase 2A (I1PP2A) could therefore indirectly regulate the phosphorylation status of tau. As an important step towards elucidation of the role of I1PP2A in the physiology and pathology of tau phosphorylation, we developed a novel monoclonal antibody, DC63, which recognizes I1PP2A. Specificity of the antibody was examined by mass spectrometry and Western blot. This analysis supports the conclusion that the antibody does not recognize any of the other proteins of the 9-member leucine-rich acidic nuclear phosphoprotein family to which I1PP2A belongs. Immunoblot detection revealed that the inhibitor I1PP2A is expressed throughout the brain, including the hippocampus, temporal cortex, parietal cortex, subcortical nuclei and brain stem. The cerebellum displayed significantly higher levels of expression of I1PP2A than was seen elsewhere in the brain. Imunohistochemical analysis of normal human brain showed that I1PP2A is expressed in both neurons and glial cells and that the protein is preferentially localized to the nucleus. We conclude that the novel monoclonal antibody DC63 could be successfully employed as a mass spectrometry-validated molecular probe that may be used for in vitro and in vivo qualitative and quantitative studies of physiological and pathological pathways involving I1PP2A. 相似文献
16.
Yang JW He XP Li C Gao LX Sheng L Xie J Shi XX Tang Y Li J Chen GR 《Bioorganic & medicinal chemistry letters》2011,21(4):1092-1096
There has been considerable interest in the development of protein tyrosine phosphatase (PTP) inhibitors since many of the PTP members are tightly associated with major human diseases including autoimmune disorders, diabetes and cancer. We report here a unique and rapid approach toward the development of novel PTP inhibitor entities based on triazolyl pseudo-glycopeptides. By employing microwave-accelerated Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC or ‘click reaction’), a series of triazole-linked serinyl, threoninyl, phenylalaninyl and tyrosinyl 1-O-gluco- or galactosides have been efficiently synthesized in high yields within only ∼30 min. Successive biological assay identified these glycopeptidotriazoles as favorable PTP1B and CDC25B inhibitors with selectivity over TCPTP, LAR, SHP-1 and SHP-2. Both the structural diversity of the amino acid (Ser, Thr, Phe and Tyr) introduced and the epimeric identity (Glc or Gal) on monosaccharide scaffold were determined to impact the corresponding inhibitory activity and selectivity. In addition, the benzylated sugar scaffold was demonstrated to act as a crucial role for enhancing the binding affinity of the inhibitors with the targeted PTP. Docking simulation was eventually conducted to propose plausible binding modes of this compound series with PTP1B and CDC25B. Our approach readily realized from naturally abundant raw materials (sugar and amino acid) and via facile, regioselective and expeditious synthetic method (microwave-assisted click reaction) might provide new insights toward the ‘click’ fabrication of structurally diverse PTP inhibitors. 相似文献
17.
According to the chemical genetic approach, small molecules that bind directly to proteins are used to analyze protein function, thereby enabling the elucidation of complex mechanisms in mammal cells. Thus, it is very important to identify the molecular targets of compounds that induce a unique phenotype in a target cell. Phoslactomycin A (PLMA) is known to be a potent inhibitor of protein Ser/Thr phosphatase 2A (PP2A); however, the inhibitory mechanism of PP2A by PLMA has not yet been elucidated. Here, we demonstrated that PLMA directly binds to the PP2A catalytic subunit (PP2Ac) in cells by using biotinylated PLMA, and the PLMA-binding site was identified as the Cys-269 residue of PP2Ac. Moreover, we revealed that the Cys-269 contributes to the potent inhibition of PP2Ac activity by PLMA. These results suggest that PLMA is a PP2A-selective inhibitor and is therefore expected to be useful for future investigation of PP2A function in cells. 相似文献
18.
Jie Zhang Tatsunori Sasaki Wei Li Kazuya Nagata Koji Higai Feng Feng Jian Wang Maosheng Cheng Kazuo Koike 《Bioorganic & medicinal chemistry letters》2018,28(7):1194-1197
Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (1–10) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC50 11.1?μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development. 相似文献
19.
You Neng Wu Paul D. Wagner 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1991,1092(3):384-390
A protein phosphatase and phosphatase inhibitors were used to examine the role of protein phosphorylation in the regulation of norepinephrine secretion in digitonin-permeabilized bovine chromaffin cells. Addition of okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, or 1-naphthylphosphate, a more general phosphatase inhibitor, to digitonin-permeabilized chromaffin cells caused about a 100% increase in the amount of norepinephrine secreted in the absence of Ca2+ (in 5 mM EGTA) without affecting the amount of norepinephrine secreted in the presence of 10 μM free Ca2+. This stimulation of norepinephrine secretion by protein phosphatase inhibitors suggests that in the absence of Ca2+ there is a slow rate phosphorylation and that this phosphorylation triggers secretion. Addition of an exogenous type 2A protein phosphatase caused almost a 50% decrease in Ca2+-dependent norepinephrine secretion. Thus, the amounts of norepinephrine released both in the absence of Ca2+ and in the presence of Ca2+ appear to depend upon the level of protein phosphorylation. 相似文献
20.
Caixia Yuan Liping Lu Xiaoli Gao Yanbo Wu Maolin Guo Ying Li Xueqi Fu Miaoli Zhu 《Journal of biological inorganic chemistry》2009,14(6):841-851
Abstract A series of oxovanadium complexes with mixed ligands, a tridentate ONO-donor Schiff base ligand [viz., salicylidene anthranilic
acid (SAA)], and a bidentate NN ligand [viz., 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[3,2-a:2′,3′-c]phenazine (dppz), or 7-methyldipyrido[3,2-a:2′,3′-c]phenazine (dppm)], have been synthesized and characterized by elemental analysis, electrospray ionization mass spectrometry,
UV–vis spectroscopy, Fourier transform IR spectroscopy, EPR spectroscopy, and X-ray crystallography. Crystal structures of
both complexes, [VIVO(SAA)(bpy)]·0.25bpy and [VIVO(SAA)(phen)]·0.33H2O, reveal that oxovanadium(IV) is coordinated with one nitrogen and two oxygen atoms from the Schiff base and two nitrogen
atoms from the bidentate planar ligands, in a distorted octahedral geometry (VO3N3). The oxidation state of V(IV) with d
1 configuration was confirmed by EPR spectroscopy. The speciation of VO–SAA–bpy in aqueous solution was investigated by potentiomtreic
pH titrations, and the results revealed that the main species are two ternary complexes at a pH range of 7.0–7.4, and one
is the isolated crystalline complex. The complexes have been found to be potent inhibitors against human protein tyrosine
phosphatase 1B (PTP1B) (IC50 approximately 30–61 nM), T-cell protein tyrosine phosphatase (TCPTP), and Src homology phosphatase 1 (SHP-1) in vitro. Interestingly,
the [VIVO(SAA)(bpy)] complex selectively inhibits PTP1B over the other two phosphatases (approximate ninefold selectivity against
SHP-1 and about twofold selectivity against TCPTP). Kinetics assays suggest that the complexes inhibit PTP1B in a competitive
and reversible manner. These suggest that the complexes may be promising candidates as novel antidiabetic agents.
Graphical Abstract
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献