首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation in the major histocompatibility complex (MHC) class IIB was tested in Japanese flounder (Paralichthys olivaceus) for survival after challenge with bacterial infection. The material consisted of 6000 Japanese flounder from 60 families challenged with Vibrio anguillarum, which causes significantly different mortality in flounder families. Five individuals from each of six high-resistance (HR) and six low-resistance (LR) families were screened for their MHC class IIB genotypes using sequence analysis. High polymorphism of MHC IIB gene and at least three loci were discovered in Japanese flounder and the rate of d(N) occurred at a significantly higher frequency than that of d(S) in PBR. Among 60 individuals, 76 alleles were discovered and 15 alleles were used to study associations between alleles and resistance to disease. We found highly significant associations between resistance towards infectious disease caused by V. anguillarum and MHC class IIB polymorphism in Japanese flounder. Some alleles appeared in both HR and LR families, while some alleles were only discovered in HR or LR families. One allele, Paol-DAB*4301, was significantly more prevalent in HR families than in LR families (P=0.023). Paol-DAB*0601, Paol-DAB*0801, Paol-DAB*2001, Paol-DAB*3803 were discovered in two HR families with high frequency. One allele, Paol-DAB*1601, was discovered in three LR families. The steady heredity of MHC class IIB alleles was observed, and the family having Paol-DAB*4301 alleles was confirmed with higher resistance to V. anguillarum. This study confirmed the association between alleles of MHC class IIB gene and disease resistance, and also detected some alleles which might be correlated with high bacterial infection resistance. The disease resistance-related MHC markers could be used for molecular marker-assisted selective breeding in the flounder.  相似文献   

2.
The extreme polymorphism found at some major histocompatibility complex (MHC) loci is believed to be maintained by balancing selection caused by infectious pathogens. Experimental support for this is inconclusive. We have studied the interaction between certain MHC alleles and the bacterium Aeromonas salmonicida, which causes the severe disease furunculosis, in Atlantic salmon (Salmo salar L.). We designed full-sibling broods consisting of combinations of homozygote and heterozygote genotypes with respect to resistance or susceptibility alleles. The juveniles were experimentally infected with A. salmonicida and their individual survival was monitored. By comparing full siblings carrying different MHC genotypes the effects on survival due to other segregating genes were minimized. We show that a pathogen has the potential to cause very intense selection pressure on particular MHC alleles; the relative fitness difference between individuals carrying different MHC alleles was as high as 0.5. A co-dominant pattern of disease resistance/susceptibility was found, indicative of qualitative difference in the immune response between individuals carrying the high- and low-resistance alleles. Rather unexpectedly, survival was not higher among heterozygous individuals as compared with homozygous ones.  相似文献   

3.
To clarify allelic diversity at the locus of major histocompatibility complex MHC class I-A1 in the Far Eastern pink salmon Oncorhynchus gorbuscha, sequencing of the electrophoretic alleles isolated from the gel (DGGE alleles) was performed. In 47 individuals, the genotypes of which consisted of ten DGGE alleles, 18 MHC I-A1 nucleotide sequences were revealed, and thus, eight cryptic alleles not detected by electrophoresis were identified. Eleven of these alleles were identified earlier in pink salmon from Hokkaido, Alaska, and British Columbia, and seven, possibly, were unique to the populations from some Far Eastern regions. Six of the previously determined DGGE alleles corresponded to more than one nucleotide sequence. However, the sequences attributed to the same DGGE allele differed on average by less than 1 nucleotide. These findings point to sufficient sensitivity of the DGGE method, although the genetic diversity and differentiation estimates obtained with it will obviously be somewhat underestimated. Considerable predominance of nonsynonymous substitutions over the synonymous ones in the codons of the MHC I-A1 antigen-binding site confirms the presence of positive selection aimed at providing the population resistance to local spectrum of pathogens. Refinement of the allelic composition of the adaptively important MHC genetic marker will contribute to more complete understanding of the adaptive genetic structure of pink salmon as an important element of the overall population structure of the species.  相似文献   

4.
Understanding the selective forces influencing genetic diversity is a fundamental goal of evolutionary ecology. The genes of the major histocompatibility complex (MHC) play a key role in the adaptive immune response of vertebrates and thus provide an excellent opportunity to examine the agents of selection on a functionally important gene. Here we examine the genetic architecture of the MHC class IIB genes in 10 wild populations of guppies (Poecilia reticulata) in Northern Trinidad. We have previously shown that these populations are significantly less diverged at the class IIB locus than expected based on neutral (microsatellite) loci. We now survey infection by Gyrodactylus turnbulli and G. bullatarudis, common parasitic worms that infect guppies, as a potential agent of homogenizing selection. We used a genetic algorithm to partition both additive and non-additive genetic effects of the five most common MHC allele types as well as a rare allele category. Although we found no evidence for non-additive effects, across the populations we found that one allele type (the a-type) had a significant negative additive effect on parasite load. Thus, individuals who had more copies of the a-type allele were infected with fewer gyrodactylus than individuals with fewer copies of the allele. These results not only link parasite infection with MHC genotype, they provide a mechanism of homogenizing selection across these otherwise disparate populations.  相似文献   

5.
The full length of major histocompatibility complex (MHC) class IIB cDNA was cloned from a Chinese population of Paralichthys olivaceus by homology cloning and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The MHC IIB genomic sequence is 1,864 bp long and consists of 34-bp 5′UTR, 741-bp open reading frame, 407-bp 3′UTR, 96-bp intron1, 392-bp intron2, 85-bp intron3, and 109-bp intron4. Phylogenetic analysis showed that the putative MHC class IIB amino acid of the Chinese P. olivaceus shared 28.3% to 85.4% identity with that of the reported MHC class IIB in other species. A significant association between MHC IIB polymorphism and disease resistance/susceptibility was found in Chinese P. olivaceus. Thirteen different MHC IIB alleles were identified among 411 clones from 84 individuals. Among the 280 (268) nucleotides, 32 (11.4%) nucleotide positions were variable. Most alleles such as alleles a, b, c, d, e, f, j, k, i, m were commonly found in both resistant and susceptible stock. Via χ2 test, allele d was significantly more prevalent in individuals from susceptible stock than from resistant stock, and their percentages were 23.80% and 7.14%, respectively. In addition, allele g occurred in 9 and allele h in 4 of 42 resistant individuals that were not present in the susceptible stock; their percentages were 21.4% and 9.52%, respectively. Although allele l was found only in 8 individuals from the susceptible stock, its percentage is 19.05%.  相似文献   

6.
Studies of major histocompatibility complex (MHC) diversity in non-model vertebrates typically focus on structure and sequence variation in the antigen-presenting loci: the highly variable and polymorphic class I and class IIB genes. Although these studies provide estimates of the number of genes and alleles/locus, they often overlook variation in functionally related and co-inherited genes important in the immune response. This study utilizes the sequence of the MHC B-locus derived from a commercial turkey to investigate MHC variation in wild birds. Sequences were obtained for nine interspersed MHC amplicons (non-class I/II) from each of 40 birds representing 3 subspecies of wild turkey (Meleagris gallopavo). Analysis of aligned sequences identified 238 single-nucleotide variants approximately one-third of which had minor allele frequencies >0.2 in the sampled birds. PHASE analysis identified 70 prospective MHC haplotypes in the wild turkeys, whereas a combined analysis with commercial birds identified almost 100 haplotypes in the species. Denaturing gradient gel electrophoresis (DGGE) of the class IIB loci was used to test the efficacy of single-nucleotide polymorphism (SNP) haplotyping to capture locus-wide variation. Diversity in SNP haplotypes and haplotype sharing among individuals was directly reflected in the DGGE patterns. Utilization of a reference haplotype to sequence interspersed regions of the MHC has significant advantages over other methods of surveying diversity while identifying high-frequency SNPs for genotyping. SNP haplotyping provides a means to identify both divergent haplotypes and homozygous individuals for assessment of immunological variation in wild and domestic populations.  相似文献   

7.
Genes of the major histocompatibility complex (MHC) are indispensable for pathogen defence in vertebrates. With wild-caught three-spined sticklebacks (Gasterosteus aculeatus) we conducted the first study to relate individual reproductive parameters to both MHC class I and II diversities. An optimal MHC class IIB diversity was found for male nest quality. However, male breeding colouration was most intense at a maximal MHC class I diversity. One MHC class I allele was associated with male redness. Similarly, one MHC class IIB allele was associated with continuous rather than early female reproduction, possibly extending the reproductive period. Both alleles occurred more frequently with increasing individual allele diversity. We suggest that if an allele is currently not part of the optimum, it had not been propagated by choosy females. The parasite against which this allele provides resistance is therefore unlikely to have been predominant the previous year - a step to negative frequency-dependent selection.  相似文献   

8.
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment.  相似文献   

9.
Major histocompatibility complex (MHC) variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or frequency-dependent selection. However, empirical support for these hypotheses under natural conditions is rare. In this study, we investigated the genetic constitution of the functionally important MHC class II gene (DRB exon 2) and the parasite load in a population of the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Fifty-eight individuals were genetically examined and the endoparasite load was quantified by counting fecal helminth eggs by using a modified McMaster technique. Thirty-four animals (58.6%) were infected. We identified 20 different MHC alleles with high levels of sequence divergence between alleles. Particularly, the antigen-binding sites revealed a significant higher rate of nonsynonymous substitutions (d(N)) than synonymous substitutions (d(S)), giving strong evidence of balancing selection. Heterozygosity did influence the infection status (being infected or not) and the individual fecal egg count (FEC) value with significantly higher values observed in homozygous individuals. Furthermore, a positive relationship was found between specific alleles and parasite load. The allele Rhpu-DRB*1 significantly occurred more frequently in infected individuals and in individuals with high FEC values (high parasite load). Individuals with the allele Rhpu-DRB*1 had a 1.5-fold higher chance of being infected than individuals without this allele (odds ratio test, P < 0.05). Contrarily, the allele Rhpu-DRB*8 significantly occurred more frequent in individuals with low FEC values. Our results support the hypotheses that MHC polymorphism in R. pumilio is maintained through pathogen-driven selection acting by both heterozygosity advantage and frequency-dependent selection.  相似文献   

10.
Miller KM  Ming TJ  Schulze AD  Withler RE 《BioTechniques》1999,27(5):1016-8, 1020-2, 1024 passim
We describe a rapid and sensitive method for the detection of nucleotide sequence variation that can be used for large-scale screening of population markers. Denaturing gradient gel electrophoresis (DGGE) detects sequence variants of amplified fragments by the differences in their melting behavior. DGGE detects most single-base substitutions when carried out on products amplified with a primer to which a GC clamp has been added. Although DGGE has been primarily used for the detection of limited numbers of single-base mutations in disease studies, it offers great potential for use in population analysis of genetic markers with greater levels of sequence variation. The methodology described was developed to identify the number and distribution of MHC class I alpha 1 alleles among chinook salmon (Oncorhynchus tshawytscha) populations. DGGE detects 28 of 31 identified alpha 1 sequences, which differ by between 1 and 16 nucleotides and a two-codon indel. By creating a network of control alleles, 22-23 of the MHC alleles can be resolved rapidly and accurately by a single gel run condition, and 27 alleles can be resolved by two gel run conditions. This techniques has been used in surveys scoring alleles from two MHC markers (class I alpha 1 and alpha 2) in 20,000 individuals of chinook and coho (O. kisutch) salmon. A single person in our laboratory now analyzes 160 salmon from one MHC locus per day with DGGE.  相似文献   

11.
The aim was to evaluate the performance of selected individual MHC class I and class II alpha (A) alleles, and combinations of these on disease resistance against infectious salmon anaemia (ISA). The material consisting of 1966 fish from seven families, contained five MHC class I alleles and four MHC class II A alleles. Which representing given class II A and class II beta (B) haplotypes, totalling 19 MHC class I and class II A genotypes. The fish were challenged with infectious salmon anaemia virus (ISAV), the virus causing ISA. Dead fish were collected daily during the challenge experiment and the survivors were collected at termination. All fish were genotyped for MHC class I and class II A. The total mortality in the material was 85.14%. For MHC class I, UBA*0201 and UBA*0301 were significantly the most resistant alleles, while UBA*0601 for class I and DAA*0301 for class II A were the significantly most susceptible alleles. The analysis of combined MHC class I and class II A genotypes detected that fish with the genotype UBA*0201/*0301;DAA*0201/*0201 were the most resistant fish with a hazard ratio (HR) at 0.750, while the fish with the genotypes UBA*0601/*0801;DAA*0501/*0501 and UBA*0201/*0301;DAA*0301/*0501 were the most susceptible fish with HR of 1.334 and 1.425. In addition, Cox regression analysis within family detected combined MHC class I and class II A genotypes that contributed significantly to resistance and susceptibility. The study confirmed the expectation of performance of individual MHC class I and class II A alleles, and also detected an effect of MHC class I and class II A in combinations.  相似文献   

12.
We investigated the importance of the major histocompatibility complex (MHC) constitution on the parasite burden of free-ranging mouse lemurs (Microcebus murinus) in four littoral forest fragments in southeastern Madagascar. Fourteen different MHC class II DRB-exon 2 alleles were found in 228 individuals with high levels of sequence divergence between alleles. More nonsynonymous than synonymous substitutions in the functional important antigen recognition and binding sites indicated selection processes maintaining MHC polymorphism. Animals from the four forest fragments differed in their infection status (being infected or not), in the number of different nematode morphotypes per individual (NNI) as well as in the fecal egg counts (FEC) values. Heterozygosity in general was uncorrelated with any of these measures of infection. However, a positive relationship was found between specific alleles and parasite load. Whereas the common allele Mimu-DRB*1 was more frequently found in infected individuals and in individuals with high NNI and FEC values (high parasite load), the rare alleles Mimu-DRB*6 and 10 were more prevalent in uninfected individuals and in individuals with low NNI and FEC values (low parasite load). These three alleles associated with parasite load had unique amino acid motifs in the antigen binding sites. This distinguished them from the remaining 11 Mimu-DRB alleles. Our results support the hypothesis that MHC polymorphism in M. murinus is maintained through pathogen-driven selection acting by frequency-dependent selection. This is the first study of the association of MHC variation and parasite burden in a free-ranging primate.  相似文献   

13.
Genes of the major histocompatibility complex (MHC) have been studied for several decades because of their pronounced allelic polymorphism. Structural allelic polymorphism is, however, not the only source of variability subjected to natural selection. Genetic variation may also exist in gene expression patterns. Here, we show that in a natural population of three-spined sticklebacks (Gasterosteus aculeatus) the expression of MHC class IIB genes was positively correlated with parasite load, which indicates increased immune activation of the MHC when infections are frequent. To experimentally study MHC expression, we used laboratory-bred sticklebacks that were exposed to three naturally occurring species of parasite. We found strong differences in MHC class IIB expression patterns among fish families, which were consistent over two generations, thus demonstrating a genetic component. The average number of MHC class IIB sequence variants within families was negatively correlated to the MHC expression level suggesting compensatory up-regulation in fish with a low (i.e. suboptimal) MHC sequence variability. The observed differences among families and the negative correlation with individual sequence diversity imply that MHC expression is evolutionary relevant for the onset and control of the immune response in natural populations.  相似文献   

14.
Pitcher TE  Neff BD 《Molecular ecology》2006,15(9):2357-2365
The genes of the major histocompatibility complex (MHC) are found in all vertebrates and are an important component of individual fitness through their role in disease and pathogen resistance. These genes are among the most polymorphic in genomes and the mechanism that maintains the diversity has been actively debated with arguments for natural selection centering on either additive or nonadditive genetic effects. Here, we use a quantitative genetics breeding design to examine the genetic effects of MHC class IIB alleles on offspring survivorship in Chinook salmon (Oncorhynchus tshawytscha). We develop a novel genetic algorithm that can be used to assign values to specific alleles or genotypes. We use this genetic algorithm to show simultaneous additive and nonadditive effects of specific MHC class IIB alleles and genotypes on offspring survivorship. The additive effect supports the rare-allele hypothesis as a potential mechanism for maintaining genetic diversity at the MHC. However, contrary to the overdominance hypothesis, the nonadditive effect led to underdominance at one heterozygous genotype, which could instead reduce variability at the MHC. Our algorithm is an advancement over traditional animal models that only partition variance in fitness to additive and nonadditive genetic effects, but do not allocate these effects to specific alleles and genotypes. Additionally, we found evidence of nonrandom segregation during meiosis in females that promotes an MHC allele that is associated with higher survivorship. Such nonrandom segregation could further reduce variability at the MHC and may explain why Chinook salmon has one of the lowest levels of MHC diversity of all vertebrates.  相似文献   

15.
Studies were undertaken to determine the parameters of transmission of Aeromonas salmonicida in chinook salmon Oncorhynchus tshawytscha, and to develop a deterministic model of the dynamics of experimental furunculosis. For determination of disease transmission coefficient (beta), disease-related mortality rate (alpha) and natural mortality rate (gamma), fish in 70 tanks (approximately 42 fish tank(-1)) were each exposed to a single infectious donor fish, 7 tanks were randomly selected daily and all individuals were examined for the presence of A. salmonicida in the kidney. The proportion of susceptible (S), infected (I) and removed (R, dead) individuals were determined daily. The parameters beta, alpha, gamma, reproductive ratio (R0) and threshold density were estimated to be 0.0214 infected ind. d(-1), 0.29 infected ind. d(-1), 0.00015 ind. d(-1), 3.23 and 13.56 ind., respectively. Using these parameters, a deterministic disease model of A. salmonicida infection as a cause of furunculosis was constructed. The net rate at which new individuals became infected (the incidence rate) per unit time was proportional to S x I x beta. The model-produced data for S were significantly associated with experimental data (r2 = 0.92). In brief, a simple SIR (susceptible-infected-removed) model was successfully utilized to simulate observed data  相似文献   

16.
Synopsis I combined neutral microsatellite markers with the major histocompatibility complex (MHC) class IIB to study genetic differentiation and colonization history in Atlantic salmon, Salmo salar, in the Baltic Sea and in the north-eastern Atlantic. Baltic salmon populations have lower levels of microsatellite genetic variation, in terms of heterozygosity and allelic richness than Atlantic populations, confirming earlier findings with other genetic markers, suggesting that the Baltic Sea populations have been exposed to genetic bottlenecks, most likely at a founding event. On the other hand, the level of MHC variation was similar in the Baltic and in the north-eastern Atlantic, indicating that positive balancing selection has increased the level of MHC-variation. Both microsatellite and MHC class IIB genetic variation give strong support to the hypothesis that the Baltic salmon are of a biphyletic origin, the southern population in this study is strongly differentiated from both the northern Baltic salmon populations and from the north-eastern Atlantic populations. Salmon may have colonized the northern Baltic Sea either from the south, via the so called “N?rke strait” or from the north, via a proposed historical connection between the White Sea and the northern Baltic. At microsatellites, no significant isolation-by distance was found at either colonization route. At the MHC, populations were significantly isolated by distance when assuming that colonization occurred via the “N?rke strait”.  相似文献   

17.
Understanding genetic diversity in natural populations is a fundamental objective of evolutionary biology. The immune genes of the major histocompatibility complex (MHC) are excellent candidates to study such diversity because they are highly polymorphic in populations. Although balancing selection may be responsible for maintaining diversity at these functionally important loci, temporal variation in selection pressure has rarely been examined. We examine temporal variation in MHC class IIB diversity in nine guppy (Poecilia reticulata) populations over two years. We found that five of the populations changed significantly more at the MHC than at neutral (microsatellite) loci as measured by FST, which suggests that the change at the MHC was due to selection and not neutral processes. Additionally, pairwise population differentiation measures at the MHC were higher in 2007 than in 2006, with the signature of selection changing from homogenizing to diversifying selection or neutral evolution. Interestingly, within the populations the magnitude of the change at the MHC between years was related to the change in the proportion of individuals infected by a common parasite, indicating a link between genetic structure and the parasite. Our data thereby implicate temporal variation in selective pressure as an important mechanism maintaining diversity at the MHC in wild populations.  相似文献   

18.
Infectious pancreatic necrosis (IPN) virus (IPNV) infection in Atlantic salmon Salmo salar L. post-smolts and its influence on the outcome of secondary infections with infectious salmon anaemia (ISA) virus (ISAV) or Vibrio salmonicida were studied. The infections with ISAV or V salmonicida were performed both in a period of acute IPN and in the following IPNV carrier stage, 3 and 6 to 8 wk after experimental IPNV challenge, respectively. An IPNV carrier condition at low virus titre did not influence the mortality rates after secondary infections. Neither the ISAV infection nor the V. salmonicida infection in experimentally induced IPNV carriers resulted in mortalities different from those observed after challenge of IPNV-free fish. At higher IPNV titres in Atlantic salmon with acute IPN, the outcome of secondary infections was quite different from that observed in IPNV-free fish and in IPNV carriers. In 2 different experiments significantly more fish died when fish with acute IPN were infected with V salmonicida than when fish were infected with V salmonicida alone. Mortality also started earlier in the double-infected group than in the group challenged with V. salmonicida alone, 3 to 4 and 8 d after V salmonicida infection, respectively. Similar results were observed independent of whether mortalities due to IPN alone were registered in the experiments. When Atlantic salmon with acute IPN were infected with ISAV, significantly fewer fish died than when fish were infected with ISAV alone. The ongoing IPNV infection seemed to provide some protection against development of ISA.  相似文献   

19.
Chinook salmon (Oncorhynchus tshawytscha) exhibit extreme differences in coloration of skin, eggs and flesh due to genetic polymorphisms affecting carotenoid deposition, where colour can range from white to bright red. A sympatric population of red and white Chinook salmon occurs in the Quesnel River, British Columbia, where frequencies of each phenotype are relatively equal. In our study, we examined evolutionary mechanisms responsible for the maintenance of the morphs, where we first tested whether morphs were reproductively isolated using microsatellite genotyping, and second, using breeding trials in seminatural spawning channels, we tested whether colour assortative mate choice could be operating to maintain the polymorphism in nature. Next, given extreme difference in carotenoid assimilation and the importance of carotenoids to immune function, we examined mate choice and selection between colour morphs at immune genes (major histocompatibility complex genes: MHC I‐A1 and MHC II‐B1). In our study, red and white individuals were found to interbreed, and under seminatural conditions, some degree of colour assortative mate choice (71% of matings) was observed. We found significant genetic differences at both MHC genes between morphs, but no evidence of MHC II‐B1‐based mate choice. White individuals were more heterozygous at MHC II‐B1 compared with red individuals, and morphs showed significant allele frequency differences at MHC I‐A1. Although colour assortative mate choice is likely not a primary mechanism maintaining the polymorphisms in the population, our results suggest that selection is operating differentially at immune genes in red and white Chinook salmon, possibly due to differences in carotenoid utilization.  相似文献   

20.
MHC-mediated mate choice increases parasite resistance in salmon   总被引:1,自引:0,他引:1  
Natural (parasite-driven) and sexual selection are thought to maintain high polymorphism in the genes of the major histocompatibility complex (MHC), but support for a link between mate choice, MHC variation and increased parasite resistance is circumstantial. We compared MHC diversity and Anisakis loads among anadromous Atlantic salmon (Salmo salar L.) returning to four rivers to spawn, which had originated from natural spawning (parents allowed to mate freely) or artificial crosses (parents deprived from the potential benefits of mate choice). We found that the offspring of artificially bred salmon had higher parasite loads and were almost four times more likely to be infected than free-mating salmon, despite having similar levels of MHC diversity. Moreover, the offspring of wild salmon were more MHC dissimilar than the offspring of artificially crossed salmon, and uninfected fish were more dissimilar for MHC than infected fish. Thus, our results suggest a link between disassortative mating and offspring benefits and indicate that MHC-mediated mate choice and natural (parasite-driven) selection act in combination to maintain MHC diversity, and hence fitness. Therefore, artificial breeding programmes that negate the potential genetic benefits of mate choice may result in inherently inferior offspring, regardless of population size, rearing conditions or genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号