首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   

2.
Lantana camara, an abundantly available non-edible lignocellulosic biomass has been found to be a potential feedstock for ethanol production. The substrate was first pretreated with laccase followed by simultaneous saccharification and fermentation using cellulase and Saccharomyces cerevisiae, respectively. Laccase was produced from Pleurotus sp. and carbohydratases (cellulase and xylanase) were produced from Trichoderma reesei Rut C30. Using pretreated substrate simultaneous saccharification and fermentation was optimized through central composite design-based response surface methodology. Maximum bioethanol concentration of 5.14 % (v/v) was obtained at optimum process conditions of substrate concentration 17 % (w/v), inoculum volume 9 % (v/v), inoculum age 60 and 144 h of incubation time. To enhance ethanol yield, S. cerevisiae was treated with ethyl methane sulfonate, a chemical mutagenic agent which induced mutagenesis. A maximum bioethanol concentration of 6.01 % (v/v) was obtained using the mutated strain of S. cerevisiae (CM5).  相似文献   

3.
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180 °C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l−1 h−1. The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of β-glucosidase by P. stipitis. During SSF, free extracellular β-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g.  相似文献   

4.
A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percent saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.  相似文献   

5.
In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial catalyst loading impacts final cellulose conversion for SSF but not for C. thermocellum. Hydrolysis of the two substrates using cell-free C. thermocellum fermentation broth revealed much smaller difference in cellulose conversion than the difference observed for growing cultures. Tests on hemicellulose removal and particle size reduction for AFEX CS indicated that substrate accessibility is very important for enhanced solubilization by C. thermocellum.  相似文献   

6.
Alcohol fermentation has traditionally been carried out in aqueous environments because of the ready solubility of reactant (sugar) and product (ethanol). However, extraction of the product ethanol into a nonmiscible phase can result in kinetic benefits due to reduced inhibition of the fermentation reactions. In this study, we report the development of a novel simultaneous saccharification and extractive fermentation (SSEF) process. Ethanol productivity was increased by up to 65% over conventional (nonextractive) fed-batch simultaneous saccharification systems when calculated on the basis of aqueous phase volume. The amount of water required for SSEF reactions was dramatically reduced from that required for conventional SSF. In batch SSEF reactors with 2.5% aqueous phase, 50% conversion of 25% (aqueous phase concentration) Solka Floc could be achieved in 48 h using 2 FPU/g cellulase. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
Physicochemical properties of native and dilute acid pretreated (0.6% H2SO4, 10 min, and either 170°C or 180°C) poplar were investigated before and during simultaneous saccharification and fermentation (SSF). SSF duration was 5 days and employed Trichoderma reesei cellulases and Saccharomyces cerevisiae fermentation. Chemical composition (glucan, xylan, lignin), enzyme-accessible surface area (based on solute exclusion), crystallinity index, particle size distribution, particle shape, and enzyme adsorption (cellulase, β-glucosidase) were compared to cellulose conversion. Cellulose conversion varied from 8% for native poplar to 78% for the 180°C-pretreated poplar. The physicochemical properties of native poplar changed little during SSF. In contrast, the physicochemical properties of the 180°C-pretreated feedstock changed markedly. Enzyme-accessible surface area and β-glucosidase adsorption increased by 83% and 65%, respectively, as cellulose was removed from the feedstock. Crystallinity index and particle size (large fraction) decreased by 65% and 93%, respectively. Cellulase adsorption per unit weight increased initially (+45%) followed by a slight decrease (−13%). The same trends were observed, although to a lesser extent, for 170°C-pretreated feedstock.  相似文献   

8.
9.

Background

Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification.

Results

In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansiona (AFEX?-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin.

Conclusions

Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
  相似文献   

10.
The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose‐to‐glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
Summary A product with 40 % protein content was obtained from sugar beet pulp (1.25–2.0 mm) in 48 h one stage (simultaneous) saccharification/fermentation process under optimized conditions using a specific enzyme mixture andCandida tropicalis strain, also saving about 40 % enzymes in comparison to a 2-stage process.  相似文献   

12.
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH 5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’ activity.  相似文献   

13.
A simpler approach to produce biodiesel from cassava starch was established, which successfully integrates the simultaneous saccharification and heterotrophic algal fermentation in an identical system. Batch experiments were investigated to verify the feasibility of raw starchy substrates fermentation for microalgal oil. The highest cell density (49.34 g L−1) and oil content (54.60%) were obtained in 5-L fed-batch cultivation via simultaneous saccharification and fermentation (SSF). It is demonstrated that the previous multistep hydrolysis and fermentation for feedstock oil could be replaced by SSF with higher energy efficiency and lower facility costs.  相似文献   

14.
The effects of ethanol and Trichoderma reesei cellulase on the saccharification and fermentation processes as well as the tolerance of the cellulase complex for ethanol have been investigated. The studies were conducted with respect to their usefulness in the process of simulataneous saccharification and fermentation of cellulose to ethanol. The following results were obtained. (1) Fermentative activity of Kluyveromyces fragilis yeasts was gradually depressed with increasing intial ethanol concentrations and temperature of fermentation between 35–46°C. (2) Crude cellulase preparation introduced to the culture broth to a final enzyme activity of 0.5 to 2.0 FPU/ml had not distinct effect on the biomass production, ethanol yield, and glucose uptake by yeasts in 48 h fermentation at 43°C. On the other hand, only a negligible decrease in the cellulase complex activity was observed during fermentation process. (3) Saccharification of wheat straw was inhibited by at least 1% w/v ethanol. (4) The enzymes of the cellulase system showed a high stability to exposure to ethanol for 48 h at 43°C.  相似文献   

15.
VariousSaccharomyces cerevisiae strains were transformed with a 2 μ-based multicopy expression plasmid, pYIGP, carryingKluyveromyces marxianus inulinase gene under the control ofGAPDH promoter. Among them two strains, SEY2102 and 2805, showed high levels of cell growth and inulinase expression, and were selected to study their fermentation properties on inulin. Jerusalem artichoke inulin was more effective for cell growth (10∼11 g-dry wt./L at 48 hr) and inulinase expression (1.0 units/mL with SEY2102/pYIGP and 2.5 units/mL with 2805/pYIGP) than other inulin sources such as dahlia and chicory. It was also found that maximal ethanol production of 9 g/L was obtained from Jerusalem artichoke inulin at the early stationary phase (around 30 hr), indicating that recombinantS. cerevisiae cells secreting exoinulinase could be used for the simultaneous saccharification of inulin and ethanol fermentation.  相似文献   

16.
Enzymic saccharification of pretreated wheat straw   总被引:9,自引:0,他引:9  
Studies of pretreatment of wheat and its subsequent saccharification by Trichoderma reesei cellulases are reported. Steam explosion was found to be the most effective of the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentration on the rate and degree of hydrolysis. Significant inhibition of the cellulases was observed when sugar concentrations were 6% or higher. This inhibition increased when glucose and ethanol were present simultaneously. Adsorption of enzymes to the substrate was followed during a 24-h hydrolysis period. An initial rapid and extensive adsorption occurred, followed by a short desorption period that was followed in turn by a further increased adsorption peaking after 3 h. Intermediate removal of hydrolysate, particularly in combination with a second addition of enzyme, clearly improved the yield of saccharification compared to an uninterrupted hydrolysis over a 24-h period. Thus, a 74% yield of reducing sugars was obtained. Furthermore, an increase in the amount of recoverable enzymes was observed under these conditions. Evidence is presented that suggests that a countercurrent technique, whereby free enzymes in recovered hydrolysate are adsorbed onto new substrate, may provide a means of recirculating dissolved enzymes.  相似文献   

17.
Simultaneous saccharification and fermentation (SSF) studies were carried out to produce ethanol from lignocellulosic wastes (sugar cane leaves and Antigonum leptopus leaves) using Trichoderma reesei cellulase and yeast cells. The ability of a thermotolerant yeast, Kluyveromyces fragilis NCIM 3358, was compared with Saccharomyces cerevisiae NRRL-Y-132. K. fragilis was found to perform better in the SSF process and result in high yields of ethanol (2.5-3.5% w/v) compared to S. cerevisiae (2.0-2.5% w/v). Increased ethanol yields were obtained when the cellulase was supplemented with beta-glucosidase. The conversions with K. fragilis were completed in a short time. The substrates were in the following order in terms of fast conversions: Solka floc > A. leptopus > sugar cane.  相似文献   

18.
以碱预处理玉米芯渣为原料,采用单因素优化方法优化米根霉同步糖化发酵产富马酸。在此基础上,研究米根霉利用碱预处理玉米芯渣的同步糖化发酵,并与纯糖发酵进行对比。结果表明:在50 g/L底物、(NH4)2SO4质量浓度0.71 g/L、纤维素酶用量20 FPIU(以1 g纤维素计)、Ca CO3加入量30 g/L、接种量10%(体积分数)和装液量50 m L的条件下,米根霉同步糖化发酵过程产富马酸13.78 g/L,而纯糖发酵富马酸生成量仅6.21 g/L。  相似文献   

19.

Background

Large-scale processing of lignocellulosics for glucose production generally relies on high temperature and acidic or alkaline conditions. However, extreme conditions produce chemical contaminants that complicate downstream processing. A method that mainly rely on mechanical and enzymatic reaction completely averts such problem and generates unmodified lignin. Products from this process could find novel applications in the chemicals, feed and food industry. But a large-scale system suitable for this purpose is yet to be developed. In this study we applied simultaneous enzymatic saccharification and communition (SESC) for the pre-treatment of a representative lignocellulosic biomass, cedar softwood, under both laboratory and large-scale conditions.

Results

Laboratory-scale comminution achieved a maximum saccharification efficiency of 80% at the optimum pH of 6. It was possible to recycle the supernatant to concentrate the glucose without affecting the efficiency. During the direct alcohol fermentation of SESC slurry, a high yield of ethanol was attained. The mild reaction conditions prevented the generation of undesired chemical inhibitors. Large-scale SESC treatment using a commercial beads mill system achieved a saccharification efficiency of 60% at an energy consumption of 50?MJ/kg biomass.

Conclusion

SESC is very promising for the mild and clean processing of lignocellulose to generate glucose and unmodified lignin in a large scale. Economic feasibility is highly dependent on its potential to generate high value natural products for energy, specialty chemicals, feed and food application.
  相似文献   

20.
Simultaneous saccharification of starch from whole-wheat flour and fermentation to lactic acid (SSF) was investigated. For saccharification the commercial enzyme mixture SAN Super 240 L, having α-amylase, amyloglucosidase and protease activity, was used, and Lactococcus lactis ssp. lactis ATCC 19435 was used for the fermentation. SSF was studied at flour concentrations corresponding to starch concentrations of 90 g/l and 180 g/l and SAN Super concentrations between 3 μl/g and 8 μl/g starch. Kinetic models, developed for the saccharification and fermentation, respectively, were used for simulation and data from SSF experiments were used for model verification. The model simulated SSF when sufficient amounts of nutrients were available during fermentation. This was achieved with high wheat flour concentrations or with addition of yeast extract or amino acids. Nutrient release was dependent on the level of enzyme activity. Received: 26 January 1999 / Accepted: 20 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号