首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agrobacterium-mediated sorghum transformation frequency has been enhanced significantly via medium optimization using immature embryos from sorghum variety TX430 as the target tissue. The new transformation protocol includes the addition of elevated copper sulfate and 6-benzylaminopurine in the resting and selection media. Using Agrobacterium strain LBA4404, the transformation frequency reached over 10% using either of two different selection marker genes, moPAT or PMI, and any of three different vectors in large-scale transformation experiments. With Agrobacterium strain AGL1, the transformation frequencies were as high as 33%. Using quantitative PCR analyses of 1,182 T0 transgenic plants representing 675 independent transgenic events, data was collected for T-DNA copy number, intact or truncated T-DNA integration, and vector backbone integration into the sorghum genome. A comparison of the transformation frequencies and molecular data characterizing T-DNA integration patterns in the transgenic plants derived from LBA4404 versus AGL1 transformation revealed that twice as many transgenic high-quality events were generated when AGL1 was used compared to LBA4404. This is the first report providing molecular data for T-DNA integration patterns in a large number of independent transgenic plants in sorghum.  相似文献   

2.
Summary Factors influencing the Agrobacterium-mediated transformation of both monocotyledonous and dicotyledonous plant species have been widely investigated. These factors include manipulating Agrobacterium strains and plasmids, growth conditions for vir gene induction, plant genotype, inoculation and co-culture conditions, and the selection agents and their application regime. We report here a novel physical parameter during co-culture, desiccation of plant cells or tissues post-Agrobacterium infection, which greatly enhances transfer DNA (T-DNA) delivery and increases stable transformation efficiency in wheat. Desiccation during co-culture dramatically suppressed Agrobacterium growth, which is one of the factors known to favor plant cell recovery. Osmotic and abscisic acid treatments and desiccation prior to inoculation did not have the same enhancement effect as desiccation during co-culture on T-DNA delivery in wheat. An efficient transformation protocol has been developed based on desiccation and is suitable for both paromomycin and glyphosate selection. Southern analysis showed approximately 67% of transgenic wheat plants received a single copy of the transgene.  相似文献   

3.
This paper describes the development of a reliable transformation protocol for onion and shallot (Allium cepa L.) which can be used year-round. It is based on Agrobacterium tumefaciens as a vector, with three-week old callus, induced from mature zygotic embryos, as target tissue. For the development of the protocol a large number of parameters were studied. The expression of the uidA gene coding for -glucuronidase was used as an indicator in the optimization of the protocol. Subspecies (onion and shallot) and cultivar were important factors for a successful transformation: shallot was better than onion and for shallot cv. Kuning the best results were obtained. Also, it was found that constantly reducing the size of the calli during subculturing and selection by chopping, thus enhancing exposure to the selective agent hygromycin, improved the selection efficiency significantly. Furthermore, callus induction medium and co-cultivation period showed a significant effect on successful stable transformation. The usage of different Agrobacterium strains, callus ages, callus sources and osmotic treatments during co-cultivation did not influence transformation efficiency. The highest transformation frequency (1.95%), was obtained with shallot cv. Kuning. A total of 11 independent transformed callus lines derived from zygotic embryos were produced: seven lines from shallot and four lines from onion. Large differences in plantlet production were observed among these lines. The best line produced over 90 plantlets. Via PCR the presence of the uidA and hpt (hygromycin phosphotransferase) genes could be demonstrated in these putative transformed plants. Southern hybridization showed that most lines originated from one transformation event. However, in one line plants were obtained indicating the occurrence and rescue of at least three independent transformation events. This suggested that T-DNA integration occurred in different cells within the callus. Most transgenic plants only had one copy of T-DNA integrated into their genomes. FISH performed on 12 plants from two different lines representing two integration events showed that original T-DNA integration had taken place on the distal end of chromosomes 1 or 5. A total of 83 transgenic plants were transferred to the greenhouse and these plants appeared to be diploid and normal in morphology.  相似文献   

4.
Induction of Agrobacterium vir genes is one of the basic requirements for T-DNA transfer and integration into plant genome. Here we study the vir gene induction by various explant types of eggplant in order to develop a transformation protocol with improved efficiency using binary vector constructs - harbouring a hygromycin phosphotransferase gene (hpt) as a selection marker and a gfp:gus fusion gene as a reporter. A protocol for efficient Agrobacterium-mediated transformation of eggplant (Solanum melongena L cv Pusa Purple Long) has been developed by optimizing factors. Leaf, cotyledon and hypocotyl explants were tested for their ability to induce Agrobacterium vir-genes using a VirE:lacZ fusion construct and were shown to be poor inducers of the same. Addition of 100 µM acetosyringone during infection and co-cultivation steps of transformation could enhance the vir gene induction as well as a 2–3 fold increase in transformation frequency. Transformed explants showed the expression of reporter genes gus and gfp. The transgenics were analysed by peR and Southern blot hybridization, and were shown to have T-DNA integrated into their genome. The data suggest that eggplant is a relatively poor inducer of Agrobacterium vir genes, probably due to minimal phenolic production, and by modulating vir gene induction using phenolics like acetosyringone eggplant transformation can be improved.  相似文献   

5.
One of the limitations to conducting maize Agrobacterium-mediated transformation using explants of immature zygotic embryos routinely is the availability of the explants. To produce immature embryos routinely and continuously requires a well-equipped greenhouse and laborious artificial pollination. To overcome this limitation, an Agrobacterium-mediated transformation system using explants of type II embryogenic calli was developed. Once the type II embryogenic calli are produced, they can be subcultured and/or proliferated conveniently. The objectives of this study were to demonstrate a stable Agrobacterium-mediated transformation of maize using explants of type II embryonic calli and to evaluate the efficiency of the protocol in order to develop herbicide-resistant maize. The type II embryogenic calli were inoculated with Agrobacterium tumefaciens strain C58C1 carrying binary vector pTF102, and then were subsequently cultured on the following media: co-cultivation medium for 1 day, delay medium for 7 days, selection medium for 4 × 14 days, regeneration medium, and finally on germination medium. The T-DNA of the vector carried two cassettes (Ubi promoter-EPSPs ORF-nos and 35S promoter–bar ORF-nos). The EPSPs conferred resistance to glyphosate and bar conferred resistance to phosphinothricin. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to phosphinothricin indicated by the growth of putative transgenic calli on selection medium amended with 4 mg l?1 phosphinothricin, northern blot analysis of bar gene, and leaf painting assay for detection of bar gene-based herbicide resistance. Northern blot analysis and leaf painting assay confirmed the expression of bar transgenes in the R1 generation. The average transformation efficiency was 0.60%. Based on northern blot analysis and leaf painting assay, line 31 was selected as an elite line of maize resistant to herbicide.  相似文献   

6.

Key message

Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible.

Abstract

We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7–8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.  相似文献   

7.
An efficient protocol was developed for Agrobacterium tumefaciens-mediated transformation of tomato (Solanum lycopersicum) cultivars using cotyledon explants. The transformation frequency was assessed in response to several different factors, including seed germination medium, seedling age, pre-culture duration, pre-culture and co-cultivation media, inoculation medium, medium pH, washing medium, and kanamycin concentration in initial selection medium. Cotyledons excised from 6-d-old seedlings germinated on half-strength Murashige and Skoog??s (MS) basal medium containing 8.9???M benzyladenine (BA) produced the most suitable explant material. Six?days of explant pre-culture and 5?min inoculation with Agrobacterium culture in MS medium, containing 8.9???M BA, 9.3???M kinetin, and 0.4?mg?l?1 thiamine at pH?5.0, significantly improved the transformation frequency. The addition of a tobacco feeder cell layer, however, did not lead to any significant improvement in the transformation rate. Kanamycin at 20?mg?l?1 in the selection medium for the initial 10?d resulted in the highest transformation frequency. Combining the best conditions for each parameter resulted in an overall transformation efficiency of 44.3?%. Gene transfer was confirmed through PCR and Southern blot analyses. Mendelian inheritance ratios were found in 71.5?% of the independent transgenic lines from self-fertilized T1 progeny. The optimized transformation procedure showed high transformation frequencies for all three tomato cultivars tested, namely, Kashi Vishesh (H-86), Hisar Anmol (H-24), and Kashi Amrit (DVRT-1), and is also expected to give reproducible results with other tomato cultivars.  相似文献   

8.
T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43–69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19–46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5–1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8–34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93–100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.  相似文献   

9.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes.  相似文献   

10.
An efficient selection and plant regeneration protocol for Agrobacterium-mediated transformation using cotyledon explants of oriental melon (Cucumis melo L. var. makuwa) has been developed. All six oriental melon cultivars evaluated in the study showed a >90?% shoot regeneration frequency and produced 1.8?C3.6 shoots per cotyledon explant when cultured on Murashige and Skoog (MS) medium supplemented with 1.0?mg?L?1 benzyladenine and 0.01?mg?L?1 indoleacetic acid. Kanamycin (Km) and geneticin (Gt) in the shoot induction medium (SIM) were compared both qualitatively and quantitatively for their efficiency as a selection agent for the selection and regeneration of transgenic plants after Agrobacterium-mediated transformation. Shoot formation was completely inhibited at 50?mg?L?1 Km and 10?mg?L?1 Gt. Relatively high concentrations of both Gt and Km (>100?mg?L?1 Km and >25?mg?L?1 Gt) were necessary because large numbers of non-transgenic shoots survived during the selection process. The incorporation of a selectable marker (neomycin phosphotransferase II) into the genome of transgenic plants was confirmed using ??-glucuronidase (GUS), PCR and Southern blot analysis. Shoot regeneration frequencies were 41.2?% at 100?mg?L?1 Km and 15.2?% at 30?mg?L?1 Gt 8?weeks after transformation, whereas the transformation frequencies based on the PCR were 2.9 and 7.1?%, respectively, 16?weeks after transformation. These results demonstrate that a large portion of the regenerated shoots on SIM supplemented with 100?mg?L?1 Km consisted of non-transformed or escaped shoots, indicating that 30?mg?L?1 Gt is the more suitable for the selection and regeneration of transgenic plants in oriental melon.  相似文献   

11.
We developed an efficient system for agrobacterial transformation of plum (Prunus domestica L.) leaf explants using the PMI/mannose and GFP selection system. The cultivar ‘Startovaya’ was transformed using Agrobacterium tumefaciens strain CBE21 carrying the vector pNOV35SGFP. Leaf explants were placed onto a nutrient medium containing various concentrations and combinations of mannose and sucrose to develop an efficient selection system. Nine independent transgenic lines of plum plants were obtained on a regeneration medium containing 20 g/L sucrose and 15 g/L mannose. The highest transformation frequency (1.40?%) was produced using a delayed selection strategy. Starting from the 1st days after transformation and ending by regeneration of shoots from the transgenic callus, selection of transgenic cells was monitored by GFP fluorescence that allowed avoiding formation of escapes. Integration of the manA and gfp transgenes was confirmed by PCR and Southern blotting. The described transformation protocol using a positive PMI/mannose system is an alternative selection system for production of transgenic plum plants without genes of antibiotic and herbicide resistance, and the use of leaf explants enables retention of cultivar traits of plum plants.  相似文献   

12.

Key message

An improved Agrobacterium -mediated transformation protocol is described for a recalcitrant commercial maize elite inbred with optimized media modifications and AGL1. These improvements can be applied to other commercial inbreds.

Abstract

This study describes a significantly improved Agrobacterium-mediated transformation protocol in a recalcitrant commercial maize elite inbred, PHR03, using optimal co-cultivation, resting and selection media. The use of green regenerative tissue medium components, high copper and 6-benzylaminopurine, in resting and selection media dramatically increased the transformation frequency. The use of glucose in resting medium further increased transformation frequency by improving the tissue induction rate, tissue survival and tissue proliferation from immature embryos. Consequently, an optimal combination of glucose, copper and cytokinin in the co-cultivation, resting and selection media resulted in significant improvement from 2.6 % up to tenfold at the T0 plant level using Agrobacterium strain LBA4404 in transformation of PHR03. Furthermore, we evaluated four different Agrobacterium strains, LBA4404, AGL1, EHA105, and GV3101 for transformation frequency and event quality. AGL1 had the highest transformation frequency with up to 57.1 % at the T0 plant level. However, AGL1 resulted in lower quality events (defined as single copy for transgenes without Agrobacterium T-DNA backbone) when compared to LBA4404 (30.1 vs 25.6 %). We propose that these improvements can be applied to other recalcitrant commercial maize inbreds.  相似文献   

13.
14.
A complete protocol of in vitro selection and greenhouse screening for glyphosate-tolerant variants in manilagrass (Zoysia matrella [L.] Merr) was established in this study. Newly subcultured calli of more than 5?years?? old were transferred to selection medium containing 2?mM glyphosate. After two rounds of selection, 220 calli survived out of 840 and were transferred to regeneration medium without glyphosate. Regenerated plantlets were then transferred to regeneration medium containing 0.5?mM glyphosate to select tolerant plantlets. After 1-month growth, there were plantlets remained green and new shoots formed beside or on discolored explants. These surviving organisms were then transferred to fresh regeneration medium for further growth. Fully developed plantlets were transferred to a green house and then subjected to greenhouse screening by foliar spraying with 0.05?% glyphosate solution. Six glyphosate-tolerant plantlets, TP1-TP6, were obtained and proliferated for determination of sod-tolerance using morphological and physiological measurements. Fourteen days after foliar application with 0.1?% glyphosate, only TP5 showed enhanced sod-tolerance. The dark green color index value of TP5 was significantly higher than CK2, demonstrating that TP5 suffered less injury from glyphosate than CK2. Different physiological characters were also observed in CK1, CK2 and TP5. Significantly higher chlorophyll a content and catalase activity were observed in TP5 than in CK1. Fourteen days after treatment (DAT), the ion leakage, proline content and ascorbate peroxidase activity of CK2 and TP5 increased significantly, but the ion leakage of TP5 was significantly lower than that of CK2. The guaiacol peroxidase activity of TP5 increased significantly 14 DAT, and was significantly higher than that of CK1 and CK2. No change in shikimate content was observed in CK2 or TP5 14 DAT.  相似文献   

15.
Two selectable marker genes harbouring the bar coding region but differing in their promoters were compared in an Arabidopsis thaliana transformation assay using in planta infiltration with Agrobacterium tumefaciens. Surprisingly, in four Arabidopsis ecotypes examined, the 1′ promoter from the right T-DNA was superior to the most commonly used 35S promoter of cauliflower mosaic virus (CaMV). The ecotype Wassilewskija gave the highest transformation frequencies, with an average of between 5.3 and 6.3 % of the seedlings subjected to the selection. This is approximately 30-fold higher than previously reported results. Analysis of T-DNA integration patterns in single transformed plants or pooled populations revealed independent T-DNA integration events in each case. Results show that the 1′ promoter is an attractive alternative to the 35S promoter for the generation of T-DNA insertion lines. The 1′ promoter may be especially beneficial for the secondary transformation of transgenic strains containing the 35S promoter to exclude homology-mediated gene silencing.  相似文献   

16.
17.
A new promoter trap vector was constructed based on the juxtaposition of T-DNA right border to coding sequence of GUS. The new vector pRN-1 carried an intron in the GUS coding region. Promoter trap vectors pGKB5 and pRN-1 vectors were used to transform Arabidopsis ecotype Columbia using the floral dip transformation system. The transformants were selected on appropriate selection media and the primary transformants were confirmed by PCR using gene specific primers. Approximately 50 % of the T2 lines segregated for a 3:1 ratio indicating presence of T-DNA at single locus. Approximately 15% of the transformed lines showed expression of GUS. Morphological mutants for male sterility and dwarfism were also identified in the T2 population. A T-DNA tagged line was identified in T2 with GUS expression specifically in the floral parts. The number of T-DNA loci in this line was confirmed by Southern blot hybridization. T-DNA flanking region isolated from this line suggested insertions into chromosome 2 at two closely linked loci. The results demonstrate that the population generated can be used effectively to identify and characterize gene regulatory elements.  相似文献   

18.
Soybean is highly affected by weeds in tropical countries, causing significant losses in yields. Transgenic herbicide resistant soybeans have been produced in a limited number of varieties and parental lines. This study was conducted to obtain glyphosate herbicide resistant transgenic soybean plants through particle bombardment of embryonic axes in a Cuban variety. Shoot regeneration in 25 mg/L of glyphosate occurred within a short period and plantlets developed roots in a medium without selection pressure, which favored the in vitro growth of plants at a transformation frequency of 3.1–6.0?%. Expression and integration of the cp4epsps gene was confirmed in the progeny by an immune-detection assay, PCR and Southern blot. All greenhouse evaluated transgenic soybean lines (T1) displayed tolerance to 1.25 Kg/ha of glyphosate. Growth and seed development of transformed plants was similar to untransformed plants. The regeneration procedure using embryonic axes combined with the efficient selection of shoots in glyphosate enabled the production of transgenic plants of this Cuban genotype, showing high tolerance to the herbicide, good efficiency and reproducibility.  相似文献   

19.
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.  相似文献   

20.
A rapid and efficient protocol is developed for in vitro plantlet regeneration of Populus deltoides clone G48 using petiole explants. The highest frequency of shoot regeneration (74.75%) from petiole was obtained on MS medium supplemented with 0.50?mg/l BAP and 0.20?mg/l IAA. The regenerated shoots started turning brown and necrotic after 10?C15?days in culture. To overcome the browning problem, the explants along with the developing shoot buds were transferred to modified MS medium containing 0.50?mg/l BAP, 0.20?mg/l IAA, 15?mg/l AdS, 0.1% PVP, 100?mg/l casein hydrolysate, 50?mg/l L-glutamine, 250?mg/l (NH4)2SO4 and 0.5% agar. Shoot multiplication and elongation took place on the same medium. Indole-3-acetic acid at 0.10?mg/l was most effective for root regeneration. Using the current protocol, it took 2?months to regenerate plantlets. The in vitro regenerated plantlets were successfully acclimatized and established in greenhouse conditions. This regeneration system using petiole explants provides a foundation for Agrobacterium-mediated genetic transformation of P. deltoides clone G48 for incorporation of various silviculturally important traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号