首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study investigated the relationship between perception of an odour when smelled and the taste of a solution to which the odour is added as a flavorant. In Experiment 1 (E1) sweetness, sourness, liking and intensity ratings were obtained for 20 odours. Taste ratings were then obtained for sucrose solutions to which the odours had been added as flavorants. Certain odours were found to enhance tasted sweetness while others suppressed it. The degree to which an odour smelled sweet was the best predictor of the taste ratings. These findings were extended in Experiment 2 (E2), which included a second tastant, citric acid, and employed four odours from E1. The most sweet smelling odour, caramel, was found to suppress the sourness of citric acid and, as in E1, to enhance the sweetness of sucrose. Again, odours with low sweetness suppressed the sweetness of tasted sucrose. The study demonstrated that the effects of odours on taste perception are not limited to sweetness enhancement and apply to sour as well as sweet tastes. The overall pattern of results is consistent with an explanation of the taste properties of odours in terms of prior flavour-taste associations.  相似文献   

2.
The impact of olfactory perception on sweetness was explored in a model solution using odorants at subthreshold concentrations. First, the impact of 6 odorants, previously described in the literature as congruent with sweetness, was investigated at suprathreshold level in a sucrose solution. Ethyl butyrate and maltol were selected as they had the highest and the lowest sweetness-enhancing properties, respectively. Second, the impact on sweetness of the 2 odorants was investigated at subthreshold concentrations. A system delivering a continuous liquid flow at the same sucrose level, but with varying odorant concentrations, was used. At a subthreshold level, ethyl butyrate but not maltol significantly enhanced the sweetness of the sucrose solution. This study highlights that olfactory perception induced by odorants at a subthreshold level can significantly modulate taste perception. Finally, contrary to results observed with ethyl butyrate at suprathreshold levels, at subthreshold levels, the intensity of sweetness enhancement was not proportional to ethyl butyrate concentration.  相似文献   

3.
4.
Taste-smell interactions are tastant and odorant dependent   总被引:5,自引:4,他引:1  
Four experiments were conducted to assess the nature of taste–smellinteractions. In the first experiment, the ability of strawberryodor to modify the sweetness of sucrose was investigated. Thiswas accomplished by having subjects rate the sweetness of whipped-creamstimuli with and without strawberry odor over time. The stimuliwere swallowed to augment retronasal stimulation of the olfactorysystem. It was found that strawberry odor tended to enhancethe maximal sweetness and total rating time of the stimuli.In the second experiment, it was found that peanut butter odordid not enhance sweetness, thus demonstrating that an odor'sability to enhance sweetness is odor-dependent, In the thirdexperiment, it was demonstrated that strawberry odor did notenhance the saltiness of sodium chloride indicating that anodor's ability to enhance taste is tastant-dependent. In thefourth experiment, it was shown that 85% of the strawberry odorant'sability to enhance sweetness was eliminated by pinching thenostrils. This suggests that the influence of the strawberryodorant on sweetness was olfactory rather than gustatory. Itwas concluded that an odor's influence on taste is both odorantand tastant dependent.  相似文献   

5.
Through repeated pairings with a tastant such as sucrose, odors are able to take on the tastant's qualities, e.g. by becoming more sweet smelling. When such odors are subsequently experienced with a sweet tastant in solution, the mixture is often given a higher sweetness rating than the tastant alone. Odor-induced taste enhancement appears to be sensitive to whether an odor-taste combination is viewed analytically as a set of discrete qualities, or synthetically as a flavor. The present research attempted to determine if adoption of these different perceptual approaches during co-exposure with sucrose would influence the extent to which an odor would become sweet smelling and subsequently enhance sweetness intensity. In Experiment 1, subjects received multiple exposures to mixtures of sucrose with low sweetness, low familiarity odors or, as a control, the odors and sucrose solutions separately. Two groups that received mixtures made intensity ratings that promoted either synthesis or analysis of the individual elements in the mixtures. The odors became sweeter smelling irrespective of group. Only adopting a synthetic strategy produced odors that enhanced sweetness in solution. However, these effects were also shown with a 'non-exposed' control odor. This could be accounted for if the single co-exposure with sucrose that all odors received in the pre-test was able to produce sweeter odors. A second experiment confirmed this prediction. Thus, while even a single co-exposure with sucrose is sufficient to produce a sweeter odor, the adoption of a synthetic perceptual strategy during the co-exposure is necessary to produce an odor that will enhance sweetness. These data are consistent with associative leaning accounts of how odors take on taste qualities and also support the interpretation that these effects reflect the central integration of odors and tastes into flavors.  相似文献   

6.
Sensory integration in citric acid/sucrose mixtures   总被引:4,自引:3,他引:1  
The scale values of perceived sweetness, sourness and totaltaste intensity of unmixed sucrose, unmixed citric acid andseveral citric acid/sucrose mixtures were assessed, using afunctional measurement approach in combination with a two-stimulusprocedure. The data showed that the scale values obtained werelinear with perceived taste intensity. It was demonstrated thatcitric acid suppresses the sweetness of sucrose and that, inversely,sucrose suppresses the sourness of citric acid. However, thissuppressive effect was not symmetrical in the range of concentrationsused. While the degree of sweetness suppression depended onlyon the citric acid level, the degree of sourness suppressiondepended on the sucrose as well as on the citric acid concentration.With regard to the perceived total taste intensity of citricacid/sucrose mixtures, it was shown that the sum of sweetnessand sourness approximately equals the total taste intensity.The implications of the present findings for the analytic—syntheticcontroversy and for taste interaction theories are discussed.  相似文献   

7.
Interactions between oral chemical irritation, taste and temperature   总被引:3,自引:2,他引:1  
The oral chemical irritant, capsaicin, at 2, 4 and 8 p.p.m.,was combined in mixtures with sucrose (Experiment 1), sodiumchloride (Experiment 2) and soup (Experiment 3), each evaluatedat two temperatures. These mixtures were rated for their sweetnessand/or saltiness, intensity of burning sensation and total mixtureintensity. In both solution and soup, sweetness was suppressed,whereas saltiness showed only minor suppression in low NaCl,high capsaicin mixtures. The burning sensation produced by capsaicinwas uninfluenced by sucrose, while NaCl increased the burningsensation. Total mixture intensity was entirely determined bycapsaicin concentration in mixtures with sucrose, although NaClcontributed in NaCl/capsaicin mixtures. Varying temperatureinfluenced the burning sensation and total intensity of sucrose/capsaicinmixtures, but did not modulate the effects of capsaicin on taste.Explanations of taste suppression in terms of cognitive andstructural models are examined. The differential effect of capsaicinon sweetness and saltiness is also considered in terms of theirritant properties of NaCl.  相似文献   

8.
Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste ("sweet," "sour," "salty," and "bitter") and odor ("other") intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste-odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of "cherry" and "vanilla" flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods.  相似文献   

9.
The purpose of this study was to determine the degree to which the sodium salt of +/-2-(4-methoxyphenoxy)propanoic acid (Na-PMP) reduced sweet intensity ratings of 15 sweeteners in mixtures. Na-PMP has been approved for use in confectionary/frostings, soft candy and snack products in the USA at concentrations up to 150 p.p.m. A trained panel evaluated the effect of Na-PMP on the intensity of the following 15 sweeteners: three sugars (fructose, glucose, sucrose), three terpenoid glycosides (monoammonium glycyrrhizinate, rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), two N-sulfonylamides (acesulfame-K, sodium saccharin), two polyhydric alcohols (mannitol, sorbitol), 1 dihydrochalcone (neohesperidin dihydrochalcone), one protein (thaumatin) and one sulfamate (sodium cyclamate). Sweeteners were tested at concentrations isosweet with 2.5, 5, 7.5 and 10% sucrose in mixtures with two levels of Na-PMP: 250 and 500 p.p.m. In addition, the 15 sweeteners were tested either immediately or 30 s after a pre-rinse with 500 p.p.m. Na-PMP. In mixtures, Na-PMP at both the 250 and 500 p.p.m. levels significantly blocked sweetness intensity for 12 of the 15 sweeteners. However, when Na-PMP was mixed with three of the 15 sweeteners (monoammonium glycyrrhizinate, neohesperidin dihydrochalcone and thaumatin), there was little reduction in sweetness intensity. Pre-rinsing with Na-PMP both inhibited and enhanced sweetness with the greatest enhancements found for monoammonium glycyrrhizinate, neohesperidin dihydrochalcone and thaumatin, which were not suppressed by Na-PMP in mixtures. The mixture data suggest that Na-PMP is a selective competitive inhibitor of sweet taste. The finding that pre-treatment can produce enhancement may be due to sensitization of sweetener receptors by Na-PMP.  相似文献   

10.
The effect of oral capsaicin on taste sensations in humans was reinvestigated with attention to methodological issues raised in previous studies, including the mode of presentation and temperature of the tastant stimulus, as well as the sensitizing and desensitizing properties of capsaicin. One-half of the dorsal anterior tongue was pre-treated with capsaicin, followed by bilateral tastant application (sucrose, NaCl, quinine, monosodium glutamate and citric acid). Subjects indicated on which side the taste intensity was greater in a two-alternative, forced-choice procedure and also rated taste intensity independently on each side of the tongue. Each of the five tastants was tested sequentially, with reapplication of capsaicin between trials in order to maintain a constant level of burn. Four experiments were conducted: (i) a high concentration (33 p.p.m.) (109 microM) capsaicin effect on taste intensity elicited by high tastant concentrations; (ii) a high concentration capsaicin effect on taste intensity elicited by low tastant concentrations; (iii) a low concentration (1.5 p.p.m.) (4.9 microM) capsaicin effect on taste intensity elicited by low tastant concentrations; and (iv) validation of the method for localizing taste by pre-treating one side of the tongue with Gymnema sylvestre, followed by bilateral application of sucrose. In the first experiment, a significant proportion of the subjects chose the non-treated side in the two-alternative, forced-choice procedure and assigned significantly higher ratings to that side for sucrose-induced sweetness, quinine-induced bitterness and glutamate-induced umami sensations. Salty and sour sensations were not different between sides. A 15 min break was imposed in order to allow the capsaicin burn to disappear and desensitization to set in, followed by reapplication of the tastant test solutions. There were no bilateral differences in the intensity of the sensations elicited by any of the five tastants. Similar results were obtained in experiments 2 and 3. In the fourth experiment, all 15 subjects tested chose the side not treated with Gymnema sylvestre as having a stronger sweet taste and assigned significantly higher ratings to that side, thereby validating the method for taste localization. These results indicate that oral capsaicin reduces certain but not all taste sensations and are discussed in terms of possible physiological and cognitive interactions.  相似文献   

11.
It is generally assumed that the mutual, but asymmetric, suppression of the components in binary taste mixtures is an invariant property of the human psychophysical response to such mixtures. However, taste intensities have been shown to vary as a function of individual differences in sensitivity, indexed by the perceived bitterness of 6-n-propylthiouracil (PROP). To determine if these variations in taste perception influence taste mixture interactions, groups of PROP super-, medium- and non-tasters assessed four binary taste mixtures: sweet-bitter [sucrose/quinine hydrochloride (QHCl)], sweet-sour (sucrose/citric acid), salty-bitter (NaCl/QHCl) and salty-sour (NaCl/citric acid). In each experiment, subjects received factorial combinations of four levels of each of two tastants and rated individual taste intensities and overall mixture intensity. For each taste quality, super-tasters typically gave higher ratings than either medium- or non-tasters, who tended not to differ. There were also group differences in the interactions of the mixtures' components. Super-tasters rated the overall intensity of the mixtures, most likely reflecting integration of the taste components, as greater than medium- and non-tasters, who again showed few differences. In sweet-bitter mixtures, non-tasters failed to show the suppression of sweetness intensity by the highest QHCl concentration that was evident in super- and medium-tasters. These data show that the perception of both tastes and binary taste mixture interactions varies as a function of PROP taster status, but that this may only be evident when three taster groups are clearly distinguished from one another.  相似文献   

12.
The perception of sweetness and flavour were studied in viscous solutions containing 50 g/l sucrose, 100 p.p.m. iso-amyl acetate and varying concentrations of three hydrocolloid thickeners (guar gum, lambda-carrageenan and hydroxypropylmethyl cellulose). Zero-shear viscosity of the samples ranged from 1 to 5000 mPas. Perception of both sweetness and aroma was suppressed at thickener concentrations above c* (coil overlap concentration, the point at which there is an abrupt increase in solution viscosity as thickener concentration is increased). Sensory data for the three hydrocolloids was only loosely correlated with their concentration relative to c* (c/c* ratio), particularly above c*. However, when perceptual data were plotted against the Kokini oral shear stress (tau), calculated from rheological measurements, data for the three hydrocolloids aligned to form a master-curve, enabling the prediction of flavour intensity in such systems. The fact that oral shear stress can be used to model sweetness and aroma perception supports the hypothesis that somatosensory tactile stimuli can interact with taste and aroma signals to modulate their perception.  相似文献   

13.
The genetically determined ability to taste 6-n-propylthiouracil (PROP) has been linked with lowered acceptance of some bitter foods. Fifty-four women, aged 18-30 years, tasted and rated PROP-impregnated filter paper and seven solutions of PROP. Summed bitterness intensity ratings for PROP solutions determined PROP taster status. Respondents also tasted five sucrose and seven caffeine solutions, as well as seven solutions each of caffeine and PROP that had been sweetened with 0.3 mmol/l neohesperidin dihydrochalcone (NHDC). Respondents also rated three kinds of chocolate using 9-point category scales. PROP tasters rated caffeine solutions as more bitter than did non-tasters and liked them less. PROP tasters did not rate either sucrose or NHDC as more sweet. The addition of NHDC to PROP and caffeine solutions suppressed bitterness intensity more effectively for tasters than for non-tasters and improved hedonic ratings among both groups. PROP tasters and non-tasters showed the same hedonic response to sweetened caffeine solutions and did not differ in their sensory responses to chocolate. Genetic taste markers may have only a minor impact on the consumption of such foods as sweetened coffee or chocolate.  相似文献   

14.
Lemonade samples varying in sucrose concentration (4-15%) were evaluated by either a sip procedure (subjects tasted 10 mL samples) or a drink procedure (subjects consumed 60 mL samples) using a “just right” scale. The order of tasting the four lemonade samples was also balanced among subjects. Neither the amount of lemonade consumed during the test nor the sex of the subjects had an effect on the scores assigned to the samples or the just right sucrose concentration determined by linear regressions. The less pleasant samples (those scored farther from the just right point) showed sensory specific satiety evidenced by a shift away from the just right point on repeated tasting. Samples rated more pleasant or closer to the just right point did not show evidence of sensory specific satiety.  相似文献   

15.
The total intensity, sweetness, and acidity of sucrose/citric acid mixtures were judged by two types of taste panel: experienced assessors, most of whom had had many years of experience in sensory evaluation; and novice assessors, none of whom had previously taken part in a taste experiment. In other respects the experimental conditions remained almost constant. There was good correspondence between the two panels, particularly for judgments of total intensity, indicating that novice and experienced assessors evaluate taste mixtures in the same way. However, there was also an indication that experience on sensory panels may attenuate taste suppression, the suppression of acidity by sweetness being less pronounced for the experienced panel than for the novice panel. The implications for mixture perception are noted.  相似文献   

16.
A comparison of hedonic scales and just-about-right (JAR) scales is needed because data in previous studies using JAR scales suggest that predicted optimum levels of ingredients often are not the same as the levels in products that currently are sold successfully. Thus, in this research, consumers tested lemonade varying in sugar concentration from 6% to 14%, using (1) a JAR scale formed by boxes or a line and (2) a hedonic box-type scale. Predicted “optimum” levels of sweetness for the lemonade and differences in liking for the formulations were determined. The JAR line and box scales gave similar predicted optimal results (9.2% and 9.4% sucrose, respectively), which were significantly lower than the hedonic scale results (10.3% sucrose). In a preference test, consumers significantly preferred the 10.3% sugar lemonade over the 9.3% concentration, indicating that, based on paired preference testing, the hedonic scale resulted in better prediction of optimal sweetness than the JAR scale.  相似文献   

17.
The carbonation perception and sweetness perception were investigated under the presence of low level of carbondioxide less than 1.0 gas volume. Carbonation perception decreased linearly as carbonation level decreased. Sweetness perception showed inconsistency by means of evaluation methods: Triangle difference test led the result showing carbonation became a hindrance for sweetness perception. However, the measurement for the sweetness degree expressed by panellists in four categories 'not sweet', 'perhaps sweet', 'probably sweet' and 'definitely sweet', and the measurement for the points of subjective equality revealed that carbonation had no influence on sweetness perception. Commercially produced beverages whose irritation stimuli were stronger showed almost the same sweetness intensities (= perceived concentration of sucrose/actual concentration of sucrose) at approximately 0.7 regardless of various flavours. A weaker stimulus beverage, without strong flavour, showed higher sweetness intensity at 0.9. Some weaker stimuli beverages, which contained strong lemon flavour and soluble fibre, showed less sweetness intensities of 0.62-0.68 than the high-stimuli products.  相似文献   

18.
Taste–taste and flavor–taste interactions (suppression)in caffeine–sucrose and coffee–sucrose mixtureswere determined. Similar interactions for both types of mixturesshowed an extended hypoadditivity effect for overall taste orflavor intensity (percentage of suppression about 30–40%).Futhermore, mutual suppression among the components has beendetermined. Firstly, the physical intensity of the suppressivecomponent controls the amount of suppression of the other component.Thus, the suppression of bitterness and coffee flavor qualitiesincrease when sucrose levels increase, and similarly, the suppressionof sweetness increases when caffeine or coffee levels rise.Secondly, the magnitude of suppression depends upon the qualityof the suppressive component. Comparisons of the reciprocalactions were made at similar subjective intensities of the mixture'sconstituents in isolation. The results showed that, at similarperceived intensities, caffeine bitterness or coffee flavorwere suppressed by sucrose but sweetness was not affected bycaffeine or coffee.  相似文献   

19.
The effect of soluble starch (acid-modified starch) on taste intensity was investigated in human subjects. Different concentrations of sucrose (Suc), six sweeteners, NaCl, quinine-HCl (QHCl) and citric acid (Cit) were dissolved in either distilled water (DW; standard) or starch solution (test solution). The solutions were presented to naive subjects and each subject was requested to taste and compare the sweetness intensity between the standard and test solutions based on a scale ranging from +3 (enhanced) to -3 (inhibited). A greater sweetness intensity occurred with Suc at different concentration (0.1-1.0 M) dissolved in soluble starch (0.125% to 4.0%) than with Suc in DW. Similarly, five other different products of soluble starch at 0.25 and 4.0% resulted in enhancement of sweetness for 0.3 and 1.0 M Suc. With the sole exception of the taste of 0.3 M Suc, sweet enhancement did not occur with 0.43 M fructose, 0.82 M glucose, 0.82 M sorbitol, 0.0037 M aspartame, 0.0042 M saccharin-Na or 0.016 M cyclamate. Neither the saltiness of NaCl (0.01-0.3 M), the bitterness of QHCl (0.00003-0.001 M) nor the sourness of Cit (0.0003-0.01 M) were affected by the soluble starch. These results suggest that the taste enhancing effects of soluble starch on Suc sweetness might depend not only on the taste transduction mechanism, but also on the molecular interaction between Suc and soluble starch.  相似文献   

20.
The effect of cooling the tongue on the perceived intensity of taste   总被引:4,自引:2,他引:2  
Two experiments were performed (i) to measure the effect ofcooling on the perceived intensity of taste, and (ii) to determinewhether the temperature of the tongue or the temperature ofthe solution was primarily responsible for the changes in perceivedintensity that were observed. The first experiment revealedthat cooling both the tongue and the taste solutions from 36to either 28 or 20°C produced measurable reductions in theperceived intensity of the sweetness of sucrose and the bitternessof caffeine. The saltiness of NaCl and the sourness of citricacid were unaffected by cooling. The second experiment demonstratedthat the temperature of the tongue was the critical factor forproducing the effects on sweetness and bitterness. The latterfinding implies that some of the inconsistencies in the literatureon taste–temperature interactions might have been avoidedif the temperature of the tongue had been routinely controlled.In addition, the importance of lingual temperature suggeststhat thermal effects on taste intensity may often be due tochanges in the sensitivity of the gustatory transduction processrather than to changes in the molecular properties of the tastesolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号