首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of arginine by aging and 7 day old pumpkin seedlings   总被引:4,自引:3,他引:1       下载免费PDF全文
The metabolism of arginine by etiolated pumpkin (Cucurbita moschata) seedlings was studied over various time and age intervals by injecting arginine-U-14C into the cotyledons. At most, 25% of the 14C was transported from the cotyledon to the axis tissue and the amount of this transport decreased with increasing age of the seedlings. The cotyledons of 25 day old plants contained 60% of the administered 14C as unmetabolized arginine. Little 14C was in sugars and it appeared that arginine was the primary translocation product. Time course studies showed that arginine was extensively metabolized and the labeling patterns suggest that different pathways were in operation in the axis and cotyledons. The amount of arginine incorporated into cotyledonary protein show that synthesis and turnover were occurring at rapid rate. Only 25% of the label incorporated into protein by 1.5 hr remained after 96 hr. The label in protein was stable in the axis tissue. By 96 hr 50% of the administered label occurred as 14CO2 and it appeared that arginine was metabolized, through glutamate, by the citrio acid cycle in the cotyledons. The experiments showed that an extensive conversion of arginine carbon into other amino acids did not occur.  相似文献   

2.
When [l-14C]-malonate was supplied to discs cut from matureleaves of Coffea arabica, 14CO2 was released (approximately12% of the total CO2 respired) and organic acids of the Krebscycle, uronic acids, sugars and amino acids became radioactive.There was no incorporation of MC into either lipids or phenoliccompounds. The formation of glucose from malonate has not beenobserved in other studies with plant tissues. The synthesisof labelled glucose together with an active pentose phosphatepathway that is stimulated by malonate explains the accumulationof radioactive phosphogluconate in the leaf discs. Tentativeproposals are made for pathways to account for the results obtained. Key words: Coffee leaves, Malonate metabolism, Pentose phosphate pathway  相似文献   

3.
Experiments are described which examine the flux of photosyntheticassimilates from leaves to nodules of soyabean during N2 fixation.The first part, where the respiratory efflux of 14CO2 by noduleswas used as a means of assessing the import of labelled photosynthatefrom leaves, shows that most 14CO2 loss from nodulated rootsis due to the metabolic activity of nodules. Much less photosynthatewas imported by nodules if the metabolic activity associatedwith N2 fixation was inhibited by low O2 concentration. The second part describes the chemical fate of current photosynthateas it is utilized by nodules. Labelled material was detectedin nodules within c.15 min of supplying 14CO2 to the leaf. Thisrose to a maximum at c.70 min before declining by 85% withinthe following 4 h. Most (80%) 14carbon imported by nodules waseither lost as respiratory 14CO2 or re-exported as productsof N2 fixation. Ten per cent of imported carbon was found asstructural material and 10% as starch. Of the 14C soluble in ethanol, most was found in the neutralfraction (80% declining to 50% as sucrose) with smaller amountsas amino acids, organic acids (each category rising from 10%to 20%) and phosphate esters (<5%). Comparison of the distribution of 14C among amino acids, amidesand ureides in the nodules with that of xylem exudates indicatedthat selected compounds were exported from nodules. The 14Cdata indicate that c.80% of the nitrogen exported from noduleswas in the form of ureides (mainly allantoic acid) and only10–12% as amides. Key words: Nodules, 14C-photosynthate, Respiration, Carbon flux  相似文献   

4.
The amounts of carbon released into soil from roots of wheatand barley seedlings grown under three environmental conditionsfor 3 weeks with shoots in constant specific activity 14CO2are reported. This carbon loss was measured as respired 14CO2from both the root and the accompanying microbial populationand as root derived 14C-labelled organic C compounds in thesoil. With a 16 h photoperiod, growth at 15 ?C constant or 18?C day/14 ?C night gave a loss of 33–40% of the totalnet fixed carbon (defined as 14C retained in the plant plus14C lost from the root). The proportion of 14C translocatedto the roots that was released into the soil did not changewith temperature, so carbon distribution within the plant musthave changed. With a 12 h photoperiod and a temperature regimeof 18 ?C/14 ?C carbon loss from the roots was decreased to 17–25%of the total fixed carbon. Key words: Cereals, Roots, Carbon loss  相似文献   

5.
The loss of organic material from the roots of forage rape (Brassicanapus L.,) was studied by pulse-labelling 25-d-old non-sterilesand-grown plants with 14CO2. The distribution of 14C withinthe plant was measured at 0, 6 and 13 d after labelling whilst14 C accumulating in the root-zone was measured at more frequentintervals. The rates of 14C release into the rhizosphere, andloss of 14CO2 from the rhizosphere were also determined. Thesedata were used to estimate the accumulative loss of 14C fromroots and loss respiratory 14CO2 from both roots and associatedmicro-organisms. Approximately 17-19% of fixed 14CO2 was translocatedto the roots over 2 weeks, of which 30-34% was released intothe rhizosphere, and 23-24% was respired by the roots as 14CO2. Of the 14C released into the rhizosphere, between 35-51%was assimilated and respired by rhizosphere micro-organisms.Copyright1993, 1999 Academic Press Brassica napus L., carbon loss, carbon partitioning, microbial nutrition, microbial respiration, forage rape, pulse-labelling, rhizodeposition, root respiration, sand culture  相似文献   

6.
The effects of three ranges of CO2 concentration on growth,carbon distribution and loss of carbon from the roots of maizegrown for 14 d and 28 d with shoots in constant specific activity14CO2 are described. Increasing concentrations of CO2 led toenhancement of plant growth with the relative growth rate (RGR)of the roots affected more than the RGR of the shoots. Between16% and 21% of total net fixed carbon (defined as 14C retainedin the plant plus 14C lost from the root) was lost from theroots at all CO2 concentrations at all times but the amountsof carbon lost per unit weight of plant decreased with time.Possible mechanisms to account for these observations are discussed. Key words: Growth, Roots, Carbon loss, [CO2]  相似文献   

7.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

8.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

9.
Metabolism of Inorganic Carbon Taken Up by Roots in Salix Plants   总被引:1,自引:0,他引:1  
The metabolic products of inorganic carbon taken up throughthe roots from nutrient solution were studied in willow plants.Willow cuttings (Salix cv. Aquatica gigantea) were suppliedwith unlabelled or 14C-labelled NaHC03 for 1, 5, 10, and 24h in light or in darkness. After feeding, the plants were dividedinto six samples (upper and lower leaves and corresponding stems,cuttings and roots), which were frozen in liquid N2. Freeze-driedground samples were extracted into water-soluble, chloroform-solubleand insoluble fractions. The water-soluble fraction was furtherseparated into basic, acidic, and neutral fractions by ion-exchangechromatography. In the light experiment pronase treatment wasused to separate the insoluble fraction into proteins and insolublecarbohydrates. After I h feeding time, most of the 14C was fixed into organicacids and amino acids both in light and in darkness in all partsof the plants. In the roots a large part of the l4C-carbon wasincorporated into the protein and insoluble fractions alreadyduring short feeding times, and the amounts incorporated increasedwith time. In the leaves, after 1 and 5 h the main labelledcompounds were the organic acids and amino acids, but after10 h about half of the total 14C was in protein and in the insolublefraction. A further analysis of amino acids and organic acidswith HPLC showed that C-4 acids were labelled initially andthat over time the proportion of different acids changed. These results indicate that the metabolism of carbon in rootsmight take place via ß-carboxylation of PEP. Partof the fixed 14C is transported from the roots, probably asamino acids and organic acids, to the shoot. In roots the C-4acids are metabolized further into structural compounds (proteinsand insoluble carbohydrates). Key words: DIC, Salix, roots, metabolism, HPLC  相似文献   

10.
When 14CO2 was fed to flag leaf laminae at 20 d post-anthesis,the transport organs between the leaf and the grains containedappreciable 14C in glutamine, glutamate, serine, alanine, threonineand glycine. Smaller amounts of 14C were present in gamma-aminobutyricacid (GABA), aspartate and cysteine. Other amino acids whichwere labelled in the source leaf were not labelled in the transportorgans. The export of labelled glutamine, serine, glycine andthreonine from the source leaf was favoured in comparison tothe other amino acids mentioned. Threonine accumulated, andwas subsequently metabolised, in the rachis. [14C]GABA alsoaccumulated in the rachis. In the grains, the relative amountof soluble [14C]alanine increased with chase time. This wasprobably due to de novo synthesis and reflected the specialrole of alanine in grain nitrogen metabolism. Wheat, Triticum aestivum, 14CO2, amino acids, transport, carbon metabolism  相似文献   

11.
Changes in the distribution of 14C between free and bound aminoacids in wheat grains (Triticum aestivum L. cv. Arkas) at 10and 20 d post-anthesis are described. After 14CO2, labellingof the flag leaf, 14C was initially more rapidly transferredto the grains of 20 d post-anthesis plants than for 10 d post-anthesisplants. However, after a 460 min chase period in the light theamount of 14C in the grains of the younger and older plantswere similar. In the younger, more rapidly growing grains, agreater proportion of the 14C was incorporated into structuraltissue and starch. 14C accumulation in the grains continuedduring the dark in the younger grains but not in the older grains. Although the overall 14C distribution between the free aminoacid and protein pools of the grain was similar for both treatments,the distribution within the albumin, prolamin and globulin fractionsand between the individual non-bound amino acids differed. Ofthe protein fractions, the albumins were initially the mostheavily labelled but after 460 min chase the prolamins containedmore 14C. The majority of the 14C in the albumin and globulinfractions after 280 min chase was in hydrolysable, non-aminoacid compounds. In both tissues, the free amino acid pools lostradioactivity in the dark but the solid residues and proteinscontinued to function as 14C sinks. Daily fluctuations in the radioactivity in free and bound alanineare consistent with the role of free alanine as a diurnal metabolicnitrogen pool. Wheat, Triticum aestivum14CO2, amino acids, proteins, carbon metabolism  相似文献   

12.
To examine 14CO2 fixation, potential translocation, and carbonflow among leaf chemical fractions of young developing leaves,the shoot tip of 24-leaf cottonwood (Populus deltoides Bartr.ex. Marsh) plants were cut off under water, placed in artificialxylem sap, and treated with 14CO2 in continuous and pulse-chaseexperiments. Additional leaves on whole plants were spot treatedon the lamina tip to follow export from the tip only. The analysedleaves ranged in age from leaf plastochron index(LPI) –5to 3, the spot treated leaves from LPI 2 to 5. After 30 minfixation, the specific activity in the lamina tip increasedlinearly with leaf age from LPI –5 to 1 (0.5 to 4.5 kBqmg–1). Specific activity in the lower lamina increasedslowly with leaf age and did not reach 500 kBq mg–1 untilLPI –1. Total 14CO2 fixed in the lower lamina exceededthat fixed in the tip by LPI –2 because of the large amountof tissue present in the lower lamina. Although the lamina tipfixed high levels of 14CO2, pulse-chase studies coupled withautoradiography indicated no vein loading or translocation fromthe tip until about LPI 4 or 5. The 14C fixed in both tip andlower lamina was incorporated at the site of fixation and wasnot distributed to younger tissue or translocated from the lamina.Although the percentage distribution (14C in each chemical fractioncompared with the total in all fractions) of 14C among certainchemical fractions, e.g. sugars, amino acids and proteins, indicatedthat the mesophyll of the tip was more mature than the lowerlamina, physiologically both leaf sectors were immature basedon the expected 14C distribution in mature tissue. Informationfrom this and other studies indicates that the extreme tip ofa developing cottonwood leaf first begins to export photosynthateabout LPI 4 or 5 on a 24-leaf plant. The first photosynthatetranslocated may be incorporated into the vascular tissues andmesophyll directly below the tip. However, as the tip continuesto mature photosynthate is translocated past the immature lowerlamina into the petiole and out of the leaf. Populus deltoides Bartr. ex. Marsh, eastern cottonwood, translocation, leaf development, 14C fixation, carbon metabolism  相似文献   

13.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

14.
Exogenous proline-U-14C is readily metabolized to glutamate,ornithine, sugars, CO2, and organic acids, and is incorporatedinto protein by etiolated and green pumpkin cotyledons. As littletranslocation of proline from the cotyledons occur, it was proposedthat in young tissue proline is converted to glutamate, ornithineor sugar which are then readily translocated from the cotyledons.In older tissue some glutamate carbon derived from proline isalso used as an energy source and metabolized to CO2. As proteinsynthesis is occurring rapidly in these cotyledons, considerableproline is incorporated into new protein. After 10-hr, 15% ofthe absorbed radioactivity still remained as free proline. 1Present address: Instituto de Ciencias Biologicas, UniversidadeFederal de Vicosa, Vicosa, Minas Gerais, Brasil. (Received February 1, 1974; )  相似文献   

15.
Methionine sulphoximine, an inhibitor of glutamine synthetase,caused ammonia accumulation in detached wheat leaves. The ratewas increased by increased oxygen in the atmosphere and by simultaneouslysupplying glycine or giving extra nitrate; it was decreasedby isonicotinyl hydrazide. Ammonia production was light-dependentand continued at a constant rate in air for at least 2 h. Photosynthesiswas progressively inhibited after the first hour; this inhibitionwas not because of increased stomatal resistance. Leaves suppliedwith 30 mol m–3 ammonium chloride, without methioninesulphoximine, accumulated more ammonia than leaves treated withthe inhibitor but showed less inhibition of photosynthesis.The inhibitor decreased synthesis of [14C] amino acids from14CO2 in the light but increased the synthesis of [14C] malateand, relatively, the incorporation of 14C into sugar phosphates.In the absence of inhibitor, nitrate increased and ammoniumion decreased synthesis of malate. Methionine sulphoximine,by causing a shortage of amino acids, probably inhibited photosynthesisin part by decreasing the recycling of carbon from the photorespiratorycycle back to the Calvin cycle. Key words: Photosynthetic 14CO2 assimilation, Methionine sulphoximine, Detached wheat leaves  相似文献   

16.
When 14CO2 was administered to a fully expanded leaf (12th leaf)of tobacco plant at the stage just before flower budding, about30% of 14C assimilated was translocated to other organs after3 hours. After 21 hours, 20{small tilde}30% of the radioactivitywas translocated to the roots, about 20% to upper stem, 10%to lower stem, and 10% to the 17th leaf located directly abovethe 12th leaf. The amount of 14C translocated to other leaveswas small after 31 hours. When 14CO2 was applied to the 17th leaf, radioactivity in otherorgans was negligible. Judging from the time course of 14C-incorporation into organicsubstances, it was inferred that sucrose imported into the rootsfrom the 12th leaf was converted into compounds of cationicfraction and sugar esters. 14C imported into the 17th leaf was mostly incorporated into80% ethanol-soluble fraction, especially into sucrose. On theother hand, 14C fixed photosynthetically by the 17th leaf wasmostly recovered in starch and protein fraction after 8 hoursof 14CO2 assimilation. 1A part of this paper was presented at the Japanese Societyof Plant Physiologists, in April, 1965. 2Present address: Central Research Institute, Japan MonopolyCorporation, Shinagawa-ku, Tokyo.  相似文献   

17.
Changes in growth and yield parameters, and 14CO2 and (U-14C)sucrose incorporation into the primary metabolic pool, and essentialoil have been investigated under Mn-deficiency and subsequentrecovery in Mentha piperita, grown in solution culture. UnderMn-deficiency, CO2 exchange rate, total chlorophyll, total assimilatoryarea, plant dry weight, and essential oil yield were significantlyreduced, whereas chlorophyll a/b ratio, leaf area ratio andleaf stem ratio significantly increased. In leaves of Mn-deficientplants, 14CO2 incorporation into the primary metabolic pool(ethanol-soluble and -insoluble) and essential oil were significantlylower, whereas (U-14C) sucrose incorporation into these componentswas significantly higher as compared to the control. Among theprimary metabolites, the label was maximum in sugars, followedby organic acids and amino acids. A higher label in these metaboliteswas, in general, observed in stems of Mn-deficient plants ascompared to the control. Mn-deficient plants supplied with completenutrient medium for 3 weeks exhibited partial recovery in growthand yield parameters, and essential oil biogenesis. Thus, underMn-deficiency and subsequent recovery, the levels of primaryphotosynthetic metabolites and their partitioning between leafand stem significantly influence essential oil biogenesis. Key words: Mentha piperita, Mn-stress, 14CO2 and [U-14C] sucrose incorporation, oil accumulation, primary photosynthetic metabolites  相似文献   

18.
Amounts of some metabolites and the incorporation of 14CO2 intophotosynthetic products were measured in the third leaf of wheat,grown with two rates of nitrate supply at two temperatures,to analyse the effects of environmental conditions on the fluxesof carbon. Ribulose bisphosphate and 3-phosphoglyceric acidcontent per unit area were greater under nitrate deficiencyand decreased with leafage, but did not differ consistentlywith temperature. Sucrose content of young leaves was largerin cool than in warm conditions and with low nitrate, and decreasedwith age to similar values in all treatments. Starch accumulatedwith leaf age, slightly more in cool than warm conditions, andwith nitrate deficiency. Glutamate (plus glutamine), aspartate(plus asparagine), glycine and serine content of leaves weregreatest with added nitrate in cool temperature; changes withleaf age and conditions are discussed. The 14C content of assimilationproducts after exposure to 14CO2 (for up to 10 min at 20 ?C)under steady-state conditions was slightly greater in plantsgrown in the warm than in the cool temperature and with additionalnitrate. Additional nitrate increased the proportion of 14Cin, and flux of carbon to, amino acids, particularly serineand glycine, and decreased it in sugar phosphates and sucrose.Cool growth temperatures increased the proportion of 14C inamino acids (pre-dominantly glycine and serine) and decreasedthat in sucrose. Changes in the balance of carbon fluxes betweenamino acids and carbohydrates are discussed in relation to glycolatepathway metabolism and alternative routes of amino acid synthesis. Key words: Wheat, temperature, nitrate supply, carbon flux, sucrose, amino acids  相似文献   

19.
1) The wavelength effects on 14CO2-fixation by Chlorella cellswere studied, using monochromatic light of different light intensities. 2) Blue light (453 mµ) stimulated the incorporation of14C into aspartate, glutamate and malate. Red light (679 mµ),on the other hand, stimulated its incorporation into P-esters,free sugars and insoluble material. 3) The blue light effect was observed in the presence of CMUat concentrations completely suppressing ordinary photosyntheticCO2-fixation. 4) The blue light effect in the presence of CMU was inducedat very low intensities. At 453 mµ, 300 erg cm–2sec–1 was sufficient for complete saturation. 5) Time courses of 14C-incorporation into individual compoundswere investigated. Irrespective of the wavelength of the illuminatinglight, the first stable CO2-fixation product formed under weaklight (400–500 erg cm–2 sec–1) was citrulline.At higher light intensities (4,000–7,000 erg cm–2sec–1), PGA was the first stable CO2-fixation product.The incorporation of 14C into citrulline was not inhibited byCMU. 6) Experimental results indicate that both blue light-inducedincorporation of 14C into amino and organic acids and the incorporationof 14C into citrulline induced by low intensity light are operatedby a mechanism(s) independent of ordinary photosynthetic CO2-fixation.Possible effects of light regulating the carbon metabolism inalgal cells are discussed. (Received July 24, 1969; )  相似文献   

20.
  1. Details of aseptic culture of virus-free tomato seedlings usedin comparative in vivo and in vitro studies on protein synthesisare described.
  2. Developmental changes in the levels of DNA,RNA, protein andchlorophyll content of seedling cotyledonsand leaves were recorded,and are related to protein synthesis.
  3. Incorporation of isotopically labeled carbon into proteinwasfollowed both by photosynthetic uptake of 14CO2 and by theuptakeof 14C-amino acids through the roots.
  4. A marked stimulationby light of 14C uptake was observed, andthe higher rate of14C incorporation from 14CO2 than from 14C-aminoacids intothe protein fraction is discussed in relation tothe pathwaysof protein synthesis in tomato leaves, and alsowith regardto protein turnover.
1Present address: Dept. of Horticultural Science, Universityof Wisconsin, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号