首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The permeability transition pore (PTP) is a mitochondrial inner membrane Ca(2+)-sensitive channel that plays a key role in different models of cell death. Because functional links between the PTP and the respiratory chain complex I have been reported, we have investigated the effects of rotenone on PTP regulation in U937 and KB cells. We show that rotenone was more potent than cyclosporin A at inhibiting Ca(2+)-induced PTP opening in digitonin-permeabilized cells energized with succinate. Consistent with PTP regulation by electron flux through complex I, the effect of rotenone persisted after oxidation of pyridine nucleotides by duroquinone. tert-butyl hydroperoxide induced PTP opening in intact cells (as shown by mitochondrial permeabilization to calcein and cobalt), as well as cytochrome c release and cell death. All these events were prevented by rotenone or cyclosporin A. These data demonstrate that respiratory chain complex I plays a key role in PTP regulation in vivo and confirm the importance of PTP opening in the commitment to cell death.  相似文献   

2.
Antamanide is a cyclic decapeptide derived from the fungus Amanita phalloides. Here we show that antamanide inhibits the mitochondrial permeability transition pore, a central effector of cell death induction, by targeting the pore regulator cyclophilin D. Indeed, (i) permeability transition pore inhibition by antamanide is not additive with the cyclophilin D-binding drug cyclosporin A, (ii) the inhibitory action of antamanide on the pore requires phosphate, as previously shown for cyclosporin A; (iii) antamanide is ineffective in mitochondria or cells derived from cyclophilin D null animals, and (iv) abolishes CyP-D peptidyl-prolyl cis-trans isomerase activity. Permeability transition pore inhibition by antamanide needs two critical residues in the peptide ring, Phe6 and Phe9, and is additive with ubiquinone 0, which acts on the pore in a cyclophilin D-independent fashion. Antamanide also abrogates mitochondrial depolarization and the ensuing cell death caused by two well-characterized pore inducers, clotrimazole and a hexokinase II N-terminal peptide. Our findings have implications for the comprehension of cyclophilin D activity on the permeability transition pore and for the development of novel pore-targeting drugs exploitable as cell death inhibitors.  相似文献   

3.
Cyclophilin D was recently shown to mask an inhibitory site of the mitochondrial permeability transition pore (PTP) for phosphate, and to constitutively bind F(0)-F(1) ATP synthase resulting in the slowing of ATP synthesis and hydrolysis rates, thus regulating matrix adenine nucleotide levels. Here we review the striking similarities of the factors affecting the threshold for PTP induction, to those affecting binding of phosphate to formerly proposed sides on F(1)-ATPase affecting ATP hydrolytic activity, including critical arginine residues, matrix pH, [Mg(2+)], adenine nucleotides and proton motive force. Based on these similarities, we scrutinize the hypothesis that in depolarized mitochondria exhibiting reversal of F(0)-F(1) ATP synthase operation, the genetic ablation of cyclophilin D or its inhibition by cyclosporin A results in accelerated proton pumping by ATP hydrolysis, opposing a further decrease in membrane potential and promoting high matrix phosphate levels, both negatively affecting the probability of PTP opening.  相似文献   

4.
Energized mouse liver mitochondria displayed the same calcium retention capacity (a sensitive measure of the propensity of the permeability transition pore (PTP) to open) irrespective of whether phosphate, arsenate, or vanadate was the permeating anion. Unexpectedly, however, phosphate was specifically required for PTP desensitization by cyclosporin A (CsA) or by genetic inactivation of cyclophilin D (CyP-D). Indeed, when phosphate was replaced by arsenate, vanadate, or bicarbonate, the inhibitory effects of CsA and of CyP-D ablation on the PTP disappeared. After loading with the same amount of Ca(2+) in the presence of arsenate or vanadate but in the absence of phosphate, the sensitivity of the PTP to a variety of inducers was identical in mitochondria from wild-type mice, CyP-D-null mice, and wild-type mice treated with CsA. These findings call for a reassessment of conclusions on the role of the PTP in cell death that are based on the effects of CsA or of CyP-D ablation.  相似文献   

5.
Respiratory complexes are believed to play a role in the function of the mitochondrial permeability transition pore (PTP), whose dysregulation affects the process of cell death and is involved in a variety of diseases, including cancer and degenerative disorders. We investigated here the PTP in cells devoid of mitochondrial DNA (ρ(0) cells), which lack respiration and constitute a model for the analysis of mitochondrial involvement in several pathological conditions. We observed that mitochondria of ρ(0) cells maintain a membrane potential and that this is readily dissipated after displacement of hexokinase (HK) II from the mitochondrial surface by treatment with either the drug clotrimazole or with a cell-permeant HK II peptide, or by placing ρ(0) cells in a medium without serum and glucose. The PTP inhibitor cyclosporin A (CsA) could decrease the mitochondrial depolarization induced by either HK II displacement or by nutrient depletion. We also found that a fraction of the kinases ERK1/2 and GSK3α/β is located in the mitochondrial matrix of ρ(0) cells, and that glucose and serum deprivation caused concomitant ERK1/2 inhibition and GSK3α/β activation with the ensuing phosphorylation of cyclophilin D, the mitochondrial target of CsA. GSK3α/β inhibition with indirubin-3'-oxime decreased PTP-induced cell death in ρ(0) cells following nutrient ablation. These findings indicate that ρ(0) cells are equipped with a functioning PTP, whose regulatory mechanisms are similar to those observed in cancer cells, and suggest that escape from PTP opening is a survival factor in this model of mitochondrial diseases. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

6.
We have studied the effects of idebenone on mitochondrial function in cybrids derived from one normal donor (HQB17) and one patient harboring the G3460A/MT-ND1 mutation of Leber's Hereditary Optic Neuropathy (RJ206); and in XTC.UC1 cells bearing a premature stop codon at amino acid 101 of MT-ND1 that hampers complex I assembly. Addition of idebenone to HQB17 cells caused mitochondrial depolarization and NADH depletion, which were inhibited by cyclosporin (Cs) A and decylubiquinone, suggesting an involvement of the permeability transition pore (PTP). On the other hand, addition of dithiothreitol together with idebenone did not cause PTP opening and allowed maintenance of the mitochondrial membrane potential even in the presence of rotenone. Addition of dithiothreitol plus idebenone, or of idebenol, to HQB17, RJ206 and XTC.UC1 cells sustained membrane potential in intact cells and ATP synthesis in permeabilized cells even in the presence of rotenone and malonate, and restored a good level of coupled respiration in complex I-deficient XTC.UC1 cells. These findings demonstrate that idebenol can feed electrons at complex III. If the quinone is maintained in the reduced state, a task that in some cell types appears to be performed by dicoumarol-sensitive NAD(P)H:quinone oxidoreductase 1 [Haefeli et al. (2011) PLoS One 6, e17963], electron transfer to complex III may allow reoxidation of NADH in complex I deficiencies.  相似文献   

7.
Falchi AM  Isola R  Diana A  Putzolu M  Diaz G 《The FEBS journal》2005,272(7):1649-1659
Depolarization and repolarization phases (D and R phases, respectively) of mitochondrial potential fluctuations induced by photoactivation of the fluorescent probe tetramethylrhodamine methyl ester (TMRM) were analyzed separately and investigated using specific inhibitors and substrates. The frequency of R phases was significantly inhibited by oligomycin and aurovertin (mitochondrial ATP synthase inhibitors), rotenone (mitochondrial complex I inhibitor) and iodoacetic acid (inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase). Succinic acid (mitochondrial complex II substrate, given in the permeable form of dimethyl ester) abolished the rotenone-induced inhibition of R phases. Taken together, these findings indicate that the activity of both respiratory chain and ATP synthase were required for the recovery of the mitochondrial potential. The frequency of D phases prevailed over that of R phases in all experimental conditions, resulting in a progressive depolarization of mitochondria accompanied by NAD(P)H oxidation and Ca2+ influx. D phases were not blocked by cyclosporin A (inhibitor of the permeability transition pore) or o-phenyl-EGTA (a Ca2+ chelator), suggesting that the permeability transition pore was not involved in mitochondrial potential fluctuations.  相似文献   

8.
Using AS-30D rat ascites hepatoma cells, we studied the modulating action of various antioxidants, inhibitors of mitochondrial permeability transition pore and inhibitors of the respiratory chain on Cd(2+)-produced cytotoxicity. It was found that Cd(2+) induced both necrosis and apoptosis in a time- and dose-dependent way. This cell injury involved dissipation of the mitochondrial transmembrane potential, respiratory dysfunction and initial increase of the generation of reactive oxygen species (ROS), followed by its decrease after prolonged incubation. Inhibitors of the mitochondrial permeability transition pore, cyclosporin A and bongkrekic acid, and inhibitors of respiratory complex III, stigmatellin and antimycin A, but not inhibitor of complex I, rotenone, partly prevented necrosis evoked by exposure of the cells to Cd(2+). Apoptosis of the cells was partly prevented by free radical scavengers and by preincubation with N-acetylcysteine. Stigmatellin, antimycin A and cyclosporin A also abolished Cd(2+)-induced increase in ROS generation. It is concluded that Cd(2+) toxicity in AS-30D rat ascites hepatoma, manifested by cell necrosis and/or apoptosis, involves ROS generation, most likely at the level of respiratory complex III, and is related to opening of the mitochondrial permeability transition pore.  相似文献   

9.
The permeability transition pore (PTP) regulates the structural re-organization of mitochondria in response to changes in cellular Ca2+ and is thought to be an important participant in mitochondrial responses to cell death signals. Although the proteins forming the PTP have yet to be rigorously identified, recent examination of the response of mitochondria, cells and tissues lacking putative components of the PTP have been reported. Studies on mitochondria lacking cyclophilin D (CyP-D) have proved that this protein is the target for PTP inhibition by CsA; yet they have also unequivocally demonstrated that the PTP can form and open in the absence of CyP-D. Likewise, studies in mice lacking the two adenine nucleotide translocators expressed in this species have shown that a functional PTP can form in the absence of these proteins. Thus, the inner mitochondrial membrane components of the PTP remain to be identified, and the absence of CyP-D may not preclude PTP opening in vivo – a finding that questions the conclusion that the PTP participates in cell death pathways only in response to a restricted set of challenges.  相似文献   

10.
We investigated to what extent different types of NO donors induce caspase activation by opening of the mitochondrial permeability transition pore (PTP) or inhibition of mitochondrial respiration. We found that nitrosothiols can directly open the PTP in isolated mitochondria and cause cytochrome c release, whereas NONOate donors can not. In macrophages nitrosothiols cause caspase activation that is blocked by cyclosporin A or calcium chelation, both of which prevent PTP opening, whereas caspase activation caused by NONOates is much less sensitive to these agents. Inhibitors of mitochondrial respiration did not promote PTP opening in isolated mitochondria, and although they cause caspase activation in macrophages, this activation was slower than that caused by NO donors, and was relatively insensitive to cyclosporin and calcium chelators suggesting that PTP opening was not involved.  相似文献   

11.
Cyclophilins are a family of peptidyl-prolyl cis–trans isomerases whose enzymatic activity can be inhibited by cyclosporin A. Sixteen cyclophilins have been identified in humans, and cyclophilin D is a unique isoform that is imported into the mitochondrial matrix. Here we shall (i) review the best characterized functions of cyclophilin D in mitochondria, i.e. regulation of the permeability transition pore, an inner membrane channel that plays an important role in the execution of cell death; (ii) highlight new regulatory interactions that are emerging in the literature, including the modulation of the mitochondrial F1FO ATP synthase through an interaction with the lateral stalk of the enzyme complex; and (iii) discuss diseases where cyclophilin D plays a pathogenetic role that makes it a suitable target for pharmacologic intervention.  相似文献   

12.
The addition of rotenone (inhibitor of respiratory complex I), 3-nitropropionic acid (complex II inhibitor), harmine (inhibitor of complexes I and II) and cyclosporin A (CsA, an inhibitor of the mitochondrial permeability transition) reduced the nuclear damage, loss in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH in differentiated PC12 cells treated with MG132, a proteasome inhibitor. Meanwhile, rotenone, 3-nitropropionic acid and harmine did not affect the inhibitory effect of CsA or trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) on the cytotoxicity of MG132. The results suggest that proteasome inhibition-induced mitochondrial dysfunction and cell injury may be attenuated by the inhibitions of respiratory chain complex I and II. The cytoprotective effect of the mitochondrial permeability transition prevention not appears to be modulated by respiratory complex inhibition.  相似文献   

13.
The mitochondrial inner membrane permeability transition (MPT) plays an important role in the pathophysiology of acute disorders of the central nervous systems, including ischemic and traumatic brain injury, and possibly in neurodegenerative diseases. Opening of the permeability transition pore (PTP) by a combination of abnormally elevated intramitochondrial Ca2+ and oxidative stress induces the collapse of transmembrane ion gradients, resulting in membrane depolarization and uncoupling of oxidative phosphorylation. This loss of ATP synthesis eventually results in cellular metabolic failure and necrotic cell death. Drugs, e.g., cyclosporin A, can inhibit the permeability transition through their interaction with the mitochondria-specific protein, cyclophilin D, and demonstrate neuroprotection in several animal models. These characteristics of the MPT were developed almost exclusively from experiments performed with young, mature rodents whereas the neuropathologies associated with the MPT are most prevalent in the elderly population. Some evidence indicates that the sensitivity of mitochondria to Ca2+-induced PTP opening is greater in the aged compared to the young mature brain; however, the basis for this difference is unknown. Based on knowledge of factors that regulate the MPT and on other comparisons between cells and mitochondria from young and old animals, several features may be important. These aging-related features include impaired neuronal Ca2+ homeostasis, increased oxidative stress, increased cyclophilin D protein levels, oxidative modification of the adenine nucleotide translocase and of cardiolipin, and changes in the levels of anti-death mitochondrial proteins, e.g., Bcl-2. The influence of aging on both the contribution of the MPT to neuropathology and the neuroprotective efficacy of MPT inhibitors is a substantial knowledge gap that requires extensive research at the subcellular, cellular, and animal model levels.  相似文献   

14.
The permeability transition pore (PTP) is a Ca2+-sensitive mitochondrial inner membrane channel involved in several models of cell death. Because the matrix concentration of PTP regulatory factors depends on matrix volume, we have investigated the role of the mitochondrial volume in PTP regulation. By incubating rat liver mitochondria in media of different osmolarity, we found that the Ca2+ threshold required for PTP opening dramatically increased when mitochondrial volume decreased relative to the standard condition. This shrinkage-induced PTP inhibition was not related to the observed changes in protonmotive force, or pyridine nucleotide redox state and persisted when mitochondria were depleted of adenine nucleotides. On the other hand, mitochondrial volume did not affect PTP regulation when mitochondria were depleted of Mg2+. By studying the effects of Mg2+, cyclosporin A (CsA) and ubiquinone 0 (Ub0) on PTP regulation, we found that mitochondrial shrinkage increased the efficacy of Mg2+ and Ub0 at PTP inhibition, whereas it decreased that of CsA. The ability of mitochondrial volume to alter the activity of several PTP regulators represents a hitherto unrecognized characteristic of the pore that might lead to a new approach for its pharmacological modulation.  相似文献   

15.
We have studied the effects of rotenone in myoblasts from healthy donors and from patients with Ullrich congenital muscular dystrophy (UCMD), a severe muscle disease due to mutations in the genes encoding the extracellular matrix protein collagen VI. Addition of rotenone to normal myoblasts caused a very limited mitochondrial depolarization because the membrane potential was maintained by the F1FO synthase, as indicated by full depolarization following the subsequent addition of oligomycin. In UCMD myoblasts rotenone instead caused complete mitochondrial depolarization, which was followed by faster ATP depletion than in healthy myoblasts. Mitochondrial depolarization could be prevented by treatment with cyclosporin A and intracellular Ca(2+) chelators, while it was worsened by depleting Ca(2+) stores with thapsigargin. Thus, in UCMD myoblasts rotenone-induced depolarization is due to opening of the permeability transition pore rather than to inhibition of electron flux as such. These findings indicate that in UCMD myoblasts the threshold for pore opening is very close to the resting membrane potential, so that even a small depolarization causes permeability transition pore opening and precipitates ATP depletion.  相似文献   

16.
Involvement of the mitochondrial permeability transition pore (PTP) in apoptosis and PTP structure are highly controversial. In this issue of Molecular Microbiology, experiments based on yeast genetics analyse the roles of the three proteins commonly considered to form the PTP, i.e. porin, ADP/ATP carrier (ACC) and mitochondrial cyclophilin, on apoptosis-like cell death. Whereas knocking out cyclophilin had no effect, the porin-1 knockout yeast showed enhanced apoptosis, suggesting that porin-1 has an antiapoptotic role. Loss of the ACC proteins afforded protection against some causes of death, but enhanced death induced by H(2)O(2), suggesting a more complex role for the ACC proteins in regulating apoptosis-like death in yeast.  相似文献   

17.
Andrea Rasola 《FEBS letters》2010,584(10):1989-7669
The permeability transition pore (PTP) is an inner mitochondrial membrane channel that has been thoroughly characterized functionally, yet remains an elusive molecular entity. The best characterized PTP-regulatory component, cyclophilin (CyP) D, is a matrix protein that favors pore opening. CyP inhibitors, CyP-D null animals, and in situ PTP readouts have established the role of PTP as an effector mechanism of cell death, and the growing definition of PTP signalling mechanisms. This review briefly covers the functional features of the PTP and the role played by its dysregulation in disease pathogenesis. Recent progress on PTP modulation by kinase/phosphatase signal transduction is discussed, with specific emphasis on hexokinase and on the Akt-ERK-GSK3 axis, which might modulate the PTP through CyP-D phosphorylation.  相似文献   

18.
Vaseva AV  Marchenko ND  Ji K  Tsirka SE  Holzmann S  Moll UM 《Cell》2012,149(7):1536-1548
Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate oxidative stress-induced necrosis is, however, unknown. Here, we uncover a role for p53 in activating necrosis. In response to oxidative stress, p53 accumulates in the mitochondrial matrix and triggers mitochondrial permeability transition pore (PTP) opening and necrosis by physical interaction with the PTP regulator cyclophilin D (CypD). Intriguingly, a robust p53-CypD complex forms during brain ischemia/reperfusion injury. In contrast, reduction of p53 levels or cyclosporine A pretreatment of mice prevents this complex and is associated with effective stroke protection. Our study identifies the mitochondrial p53-CypD axis as an important contributor to oxidative stress-induced necrosis and implicates this axis in stroke pathology.  相似文献   

19.
The uncoupling of mitochondrial energy transduction by excess Ca2+ may be a factor in the pathogenesis of tissue injury brought about by energy deprivation, for example, in ischaemia. In isolated mitochondria the lesion appears as a large, 20 A, pore in the inner membrane. The pore is blocked potently by the immunosuppressant cyclosporin A. Cyclosporin A also markedly retards collapse of the mitochondrial inner membrane potential in energy-deprived (respiration-inhibited) cardiomyocytes as judged by changes in rhodamine 123 fluorescence, and prolongs cell viability. A potential mitochondrial target for cyclosporin A is the matrix protein cyclophilin. Purified cyclophilin activates the respiratory chain of submitochondrial particles. This might reflect not only a physiological function of this protein, but also a component involved in the generation of the 20 A pore under pathological conditions.  相似文献   

20.
Catisti R  Vercesi AE 《FEBS letters》1999,464(1-2):97-101
The ability of low concentrations (5-15 microM) of long-chain fatty acids to open the permeability transition pore (PTP) in Ca(2+)-loaded mitochondria has been ascribed to their protonophoric effect mediated by mitochondrial anion carriers, as well as to a direct interaction with the pore assembly [M.R. Wieckowski and L. Wojtczak, FEBS Lett. 423 (1998) 339-342]. Here, we have compared the PTP opening ability of arachidonic acid (AA) with that of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) at concentrations that cause similar quantitative dissipation of the membrane potential (DeltaPsi) in Ca(2+)-loaded rat liver mitochondria respiring on succinate. The initial protonophoric effects of AA and FCCP were only slightly modified by carboxyatractyloside and were followed by PTP opening, as indicated by a second phase of DeltaPsi disruption sensitive to EGTA, ADP, dithiothreitol and cyclosporin A. This second phase of DeltaPsi dissipation could also be prevented by rotenone or NAD(P)H-linked substrates which decrease the pyridine nucleotide (PN) oxidation that follows the stimulation of oxygen consumption induced by AA or FCCP. These results suggest that, under the experimental conditions used here, the PTP opening induced by AA or FCCP was a consequence of PN oxidation. Exogenous catalase also inhibited both AA- and FCCP-induced PTP opening. These results indicate that a condition of oxidative stress associated with the oxidized state of PN underlies membrane protein thiol oxidation and PTP opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号