首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the recently awarded Nobel Prize to the inventor of Phage Display, George Smith, the technique has once more gained attention. However, one should not forget about the biology behind the method. Almost always ignored is how the structure of this bacterial virus is assembled. In contrast to lytic phages, filamentous phages are constantly being extruded through the bacterial membranes without lysis. Such filamentous phages are found in all aquatic environments, such as rivers and lakes, in the deep sea, in arctic ice, in hot springs and, associated with their hosts, in plants and animals including humans. While most filamentous phages infect Gram‐negative hosts, inoviruses of Gram‐positive hosts have also been described. Despite being among the minority within the phage family with an estimate of less than 5%, filamentous phages are real parasites as they exist at the expense of the host, but do not kill it. In contrast to lytic bacteriophages, filamentous phages are assembled in the host’s membrane and extruded across the cellular envelope while the bacterium continues to grow. In this review, we focus on this complex and yet poorly understood process of assembly and secretion of filamentous phages.  相似文献   

2.
We describe a novel filamentous phage, designated VGJ phi, isolated from strain SG25-1 of Vibrio cholerae O139, which infects all O1 (classical and El Tor) and O139 strains tested. The sequence of the 7,542 nucleotides of the phage genome reveals that VGJ phi has a distinctive region of 775 nucleotides and a conserved region with an overall genomic organization similar to that of previously characterized filamentous phages, such as CTX phi of V. cholerae and Ff phages of Escherichia coli. The conserved region carries 10 open reading frames (ORFs) coding for products homologous to previously reported peptides of other filamentous phages, and the distinctive region carries one ORF whose product is not homologous to any known peptide. VGJ phi, like other filamentous phages, uses a type IV pilus to infect V. cholerae; in this case, the pilus is the mannose-sensitive hemagglutinin. VGJ phi-infected V. cholerae overexpresses the product of one ORF of the phage (ORF112), which is similar to single-stranded DNA binding proteins of other filamentous phages. Once inside a cell, VGJ phi is able to integrate its genome into the same chromosomal attB site as CTX phi, entering into a lysogenic state. Additionally, we found an attP structure in VGJ phi, which is also conserved in several lysogenic filamentous phages from different bacterial hosts. Finally, since different filamentous phages seem to integrate into the bacterial dif locus by a general mechanism, we propose a model in which repeated integration events with different phages might have contributed to the evolution of the CTX chromosomal region in V. cholerae El Tor.  相似文献   

3.
The filamentous φRSM phages (φRSM1 and φRSM3) have integration/excision capabilities in the phytopathogenic bacterium Ralstonia solanacearum. In the present study, we further investigated φRSM-like sequences present in the genomes of R. solanacearum strains belonging to the four major evolutionary lineages (phylotypes I–IV). Based on bioinformatics and comparative genomic analyses, we found that φRSM homologs are highly diverse in R. solanacearum complex strains. We detected an open reading frame (ORF)15 located upstream of the gene for φRSM integrase, which exhibited amino acid sequence similarity to phage repressor proteins. ORF15-encoded protein (a putative repressor) was found to encode a 104-residue polypeptide containing a DNA-binding (helix-turn-helix) domain and was expressed in R. solanacearum lysogenic strains. This suggested that φRSM3-ORF15 might be involved in the establishment and maintenance of a lysogenic state, as well as in phage immunity. Comparison of the putative repressor proteins and their binding sites within φRSM-related prophages provides insights into how these regulatory systems of filamentous phages have evolved and diverged in the R. solanacearum complex. In conclusion, φRSM phages represent a unique group of filamentous phages that are equipped with innate integration/excision (ORF14) and regulatory systems (ORF15).  相似文献   

4.
Theories in soil biology, such as plant–microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below‐ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above‐ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost‐effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature‐based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.  相似文献   

5.
KSF-1phi, a novel filamentous phage of Vibrio cholerae, supports morphogenesis of the RS1 satellite phage by heterologous DNA packaging and facilitates horizontal gene transfer. We analyzed the genomic sequence, morphology, and receptor for KSF-1phi infection, as well as its phylogenetic relationships with other filamentous vibriophages. While strains carrying the mshA gene encoding mannose-sensitive hemagglutinin (MSHA) type IV pilus were susceptible to KSF-1phi infection, naturally occurring MSHA-negative strains and an mshA deletion mutant were resistant. Furthermore, d-mannose as well as a monoclonal antibody against MSHA inhibited infection of MSHA-positive strains by the phage, suggesting that MSHA is the receptor for KSF-1phi. The phage genome comprises 7,107 nucleotides, containing 14 open reading frames, 4 of which have predicted protein products homologous to those of other filamentous phages. Although the overall genetic organization of filamentous phages appears to be preserved in KSF-1phi, the genomic sequence of the phage does not have a high level of identity with that of other filamentous phages and reveals a highly mosaic structure. Separate phylogenetic analysis of genomic sequences encoding putative replication proteins, receptor-binding proteins, and Zot-like proteins of 10 different filamentous vibriophages showed different results, suggesting that the evolution of these phages involved extensive horizontal exchange of genetic material. Filamentous phages which use type IV pili as receptors were found to belong to different branches. While one of these branches is represented by CTXphi, which uses the toxin-coregulated pilus as its receptor, at least four evolutionarily diverged phages share a common receptor MSHA, and most of these phages mediate horizontal gene transfer. Since MSHA is present in a wide variety of V. cholerae strains and is presumed to express in the environment, diverse filamentous phages using this receptor are likely to contribute significantly to V. cholerae evolution.  相似文献   

6.
CTXφ is a filamentous phage that encodes cholera toxin, one of the principal virulence factors of Vibrio cholerae . CTXφ is unusual among filamentous phages because it can either replicate as a plasmid or integrate into the V. cholerae chromosome at a specific site. The CTXφ genome has two regions, the 'core' and RS2. Integrated CTXφ is frequently flanked by an element known as RS1 which is related to RS2. The nucleotide sequences of RS2 and RS1 were determined. These related elements contain three nearly identical open reading frames (ORFs), which in RS2 were designated rstR , rstA2 and rstB2 . RS1 contains an additional ORF designated rstC . Functional analyses indicate that rstA2 is required for CTXφ replication and rstB2 is required for CTXφ integration. The amino terminus of RstR is similar to the amino termini of other phage-encoded repressors, and RstR represses the expression of rstA2 . Although genes with related functions are clustered in the genome of CTXφ in a way similar to those for other filamentous phages, the CTXφ RS2-encoded gene products mediating replication, integration and repression appear to be novel.  相似文献   

7.
Filamentous bacteriophages (filamentous bacterial viruses or Inovirus) are simple and well-characterised macromolecular assemblies that are widely used in molecular biology and biophysics, both as paradigms for studying basic biological questions and as practical tools in areas as diverse as immunology and solid-state physics. The strains fd, M13 and f1 are virtually identical filamentous phages that infect bacteria expressing F-pili, and are sometimes grouped as the Ff phages. For historical reasons fd has often been used for structural studies, but M13 and f1 are more often used for biological experiments. Many other strains have been identified that are genetically quite distinct from Ff and yet have a similar molecular structure and life cycle. One of these, Pf1, gives the highest resolution X-ray fibre diffraction patterns known for filamentous bacteriophage. These diffraction patterns have been used in the past to derive a molecular model for the structure of the phage. Solid-state NMR experiments have been used in separate studies to derive a significantly different model of Pf1. Here we combine previously published X-ray fibre diffraction data and solid-state NMR data to give a consensus structure model for Pf1 filamentous bacteriophage, and we discuss the implications of this model for assembly of the phage at the bacterial membrane.  相似文献   

8.
The protein product corresponding to the gene located in the region of the coliphage Ifl genome shown to contain the code for the single-stranded DNA (ssDNA)-binding proteins of all filamentous phages so far studied has been isolated from infected bacterial cells and its amino acid sequence determined. The mature protein contains 95 amino acids (calculated molecular mass 10553 Da). Its sequence corresponds to that predicted from the DNA sequence but lacks the initiating methionine residue. Although there is little direct sequence homology between the phage Ifl protein and the ssDNA-binding proteins of the other filamentous phages that have been studied, computer-based comparisons of various physical and structural parameters showed that the phage Ifl protein contains a domain that is closely related to domains in the coliphage T4 gene 32 protein and the Pseudomonas phage Pfl ssDNA-binding protein and suggest that the Ifl protein does have a ssDNA-binding function although we were unable to show this directly.  相似文献   

9.
Filamentous bacteriophage, long and thin filaments that are secreted from the host cells without killing them, have been an antithesis to the standard view of head-and-tail bacterial killing machines. Episomally replicating filamentous phage Ff of Escherichia coli provide the majority of information about the principles and mechanisms of filamentous phage infection, episomal replication and assembly. Chromosomally- integrated "temperate" filamentous phage have complex replication and integration, which are currently under active investigation. The latter are directly or indirectly implicated in diseases caused by bacterial pathogens Vibrio cholerae, Pseudomonas aeruginosa and Neisseria meningitidis. In the first half of the review, both the Ff and temperate phage are described and compared. A large section of the review is devoted to an overview of phage display technology and its applications in nanotechnology.  相似文献   

10.
11.
Experimental strategy has been developed for selection of mismatched DNA binding phages from library of E. coli f1 filamentous phages carrying random peptide inserts on the surface of bacteriophage particles. The strategy is based on the use of phage display technique, DNA heteroduplexes (with single nucleotide variations), and paramagnetic beads. DNA heteroduplexes have been obtained from biotin-labeled PCR product. During the first stage the phage particles were incubated with DNA heteroduplexes possessing mismatched nucleotides. The next step after elimination of free phages and separation of bound phages from DNA heteroduplexes was subtraction of phages binding with DNA heteroduplexes (without mismatched nucleotides). Phages selected by this method were capable of discriminating DNA heteroduplexes with single nucleotide variations from DNA homoduplexes. Phages immobilized on solid base retain their activity and specificity, and therefore can be used for developing a new screening automated method for detecting point mutations and gene polymorphism.  相似文献   

12.
AIM: To isolate bacterial viruses that infect the ruminal cellulolytic bacterium Ruminococcus albus. METHODS: Four phages infecting R. albus AR67 were isolated under anaerobic conditions using the soft-agar overlay technique. The phages were characterized on morphology, solvent stability, nucleic acid type and digestion characteristics. Two phages, phiRa02 and phiRa04 comprised icosahedral virions with linear double-stranded DNA and appeared to belong to the family Podoviridae [corrected] The other two phages are most likely filamentous phages with circular single-stranded DNA of the family Inoviridae. SIGNIFICANCE OF THE STUDY: Viruses of the family Inoviridae [corrected] have not previously been isolated from rumen bacteria. The phages isolated in this study are the first phages shown to infect the cellulolytic bacteria of the rumen. This suggests that the cellulolytic populations of the rumen are subject to lytic events that may impact on the ability of these bacteria to degrade plant fibre and on the nutrition of the animal.  相似文献   

13.
Coordination of Sex Pili with their Specifying R Factors   总被引:2,自引:0,他引:2  
A single bacterial cell can simultaneously carry both F-like (fi+) and I-like (fi?) R factors and, when the R factors are de-repressed, most cells produce both F-like and I-like sex pili. These pili can be distinguished immunologically and by their capacity to adsorb different phages1. The F pilus is the receptor for RNA phages such as MS2 and filamentous DNA phages such as M13. The I pilus is the receptor for other filamentous DNA phages such as If1 and If2. Electron microscopy suggests that these filamentous DNA phages, both F-specific and I-specific, adsorb to the tip of the pilus2,3.  相似文献   

14.
Filamentous phages consist of a single-stranded DNA genome encapsidated by several thousand copies of a small alpha-helical coat protein subunit plus several copies of four minor proteins at the filament ends. The filamentous phages are important as cloning vectors, vehicles for peptide display, and substrates for macromolecular alignment. Effective use of a filamentous phage in such applications requires an understanding of experimental factors that may influence the propensity of viral filaments to laterally aggregate in solution. Because the Raman spectrum of a filamentous phage is strongly dependent on the relative orientation of the virion with respect to the polarization direction of the electromagnetic radiation employed to excite the spectrum, we have applied Raman spectroscopy to investigate lateral aggregation of phages fd, Pf1, Pf3, and PH75 in solution. The results show that lateral aggregation of the virions and anisotropic orientation of the aggregates are both disfavored by high concentrations of salt (>200 mM NaCl) in solutions containing a relatively low virion concentration (<10 mg/mL). Conversely, the formation of lateral aggregates and their anisotropic orientation are strongly favored by a low salt concentration (<0.1 mM NaCl), irrespective of the virion concentration over a wide range. The use of Raman polarization effects to distinguish isotropic and anisotropic solutions of filamentous phages is consistent with previously reported Raman analyses of virion structures in both solutions and fibers. The Raman data are supported by electron micrographs of negatively stained specimens of phage fd, which permit an independent assessment of salt effects on lateral aggregation. The present results also identify new Raman bands that serve as potential markers of subunit side-chain orientations in filamentous virus assemblies.  相似文献   

15.
16.
17.
Expression of the human leucocyte interferon alpha 2 gene has been studied, cloned into filamentous phages (M13mp8, M13mp9) and plasmid vehicles comprising the regulatory regions and signal sequence of the filamentous phage main coat protein gene (plasmids pFPCP2 and pFPCP8).  相似文献   

18.
The tolQ (previously fii) mutation in Escherichia coli K12 inhibits infection by filamentous bacteriophages f1 and IKe but not by RNA-containing phage f2. This work extends these observations to other plasmid-specific bacteriophages including various filamentous. RNA-containing, and lipid-containing isolates. Only tip-adsorbing filamentous phages were affected by tolQ and not shaft-adsorbing ones. Electron microscopy showed that RP4-specific filamentous phage Pf3 was one of the latter kind. Several tip-adsorbing filamentous phages inhibited conjugation between tolQ strains carrying their specific plasmids, implicating the phage receptors (conjugative pili) as mating organelles. tolQ mutant strains were as proficient as their parents in conjugation mediated by a wide range of plasmids.  相似文献   

19.
In vitro selections for catalytic activity have been designed for the isolation of genes encoding enzymes from libraries of proteins displayed on filamentous phages. The proteins are generally expressed as C-terminal fusions with the N-terminus of the minor coat protein p3 for display on phages. As full-length cDNAs generally contain several stop codons near their 3′ end, this approach cannot be used for their expression on the surface of phages. Here we show that in vitro selection for catalytic activity is compatible with a system for expression of proteins as N-terminal fusions on the surface of bacteriophages. It is highlighted for the Stoffel fragment of Taq DNA polymerase I and makes use of (p3–Jun/Fos–Stoffel fragment) fusions. The efficiency of the selection is measured by an enrichment factor found to be about 55 for a phage polymerase versus a phage not expressing a polymerase. This approach could provide a method for the functional cloning of nucleotidyl transferases from cDNA libraries using filamentous phage display.  相似文献   

20.
Tur MK  Huhn M  Sasse S  Engert A  Barth S 《BioTechniques》2001,30(2):404-8, 410, 412-3
Display of functional antibody fragments on the surface of filamentous bacteriophages allows fast selection of specific phage antibodies against a variety of target antigens. However, enrichment of single chain variable fragment (scFv)-displaying phages is often hampered by the abundance of bacteriophages lacking antibody fragments. Moderate adhesive binding activities and production advantages of these "empty" phages results in their subsequent enrichment during selection on target cells. To date, very limited effort has been made to develop strategies removing nonspecific binding phages during the selection processes. To efficiently reduce insert-free phages when panning on intact cells, we increased the washing stringency by lowering the pH of the buffer with citric acid. Under standard washing procedures (pH 7.4), only approximately 73% of recovered phages were insert-free after three rounds of selection. Using stringent washing procedures (pH 5.0), approximately 12% of recovered phages contained no scFv. Using this protocol, we have cloned an antibody fragment from a mouse/human hybridoma cell line directed against the disialoganglioside GD2. This study confirms that selection of phage antibodies on cells is efficiently enhanced by assays augmenting the stringency to remove nonspecific binding phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号