首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Morphological investigations of morphogenesis accompanying the metamorphosis of the cinctoblastula larva of poriferan Plakina trilopha (Homoscleromorpha) have been made. The larva possesses a distinct columnar epithelium which subdivides into three cellular areas: antero-lateral, postero-lateral, and posterior one. Characteristic morphological features of the cells in each area can be used as natural markers when tracing the fate of larval cells during metamorphosis. The ciliated epithelium of the larva is transformed directly into choanoderm and pinacoderm, without losing its organization. This transformation is a peculiar feature of the metamorphosis in Homoscleromorpha. Metamorphosis in P. trilopha is based on epithelial morphogenesis and includes the mechanisms of flattening of the exopinacoderm, evagination and invagination of larval epithelium in the course of the development of the rhagon aquiferous system. The flattening of larval cells during exopinacoderm formation in metamorphosing P. trilopha is a common change of cell shape during epithelial morphogenesis of this species. The separation of proximal fragments of cells has been observed here. This phenomenon, that we have called “cytoplasmic shedding”, appears to play an important role in the change of epithelial cell shape in P. trilopha. Mechanism of epithelial–mesenchymal transition, i.e., ingression of epithelial ciliated cells into the cavity of the metamorphosing larva of P. trilopha participates in mesohylar cell origin.  相似文献   

2.
Sponge larval flagellated cells have been known to form the external layer of larva, but their subsequent fate and morphogenetic role are still unclear. It is actually impossible to follow flagellated cell developmental fate unless a specific marker is found. We used percoll density gradient fractionation to separate different larval cell types of Halisarca dujardini (Demospongiae, Halisarcida). A total of 5 fractions were obtained which together contained all cell types. Fraction 1 contained about 100% FC and its polypeptide composition was very different to that of the other fractions. Of all larval cell types, flagellated cells displayed the lowest in vitro aggregation capacity. We raised a polyclonal antibody against a 68 kDa protein expressed by larval flagellated cells. Its specificity was tested on total protein extract from adult sponges by Western blotting and proved to be suitable for immunofluorescence. By means of double immunofluorescence using both this polyclonal antibody and commercial anti-tubulin antibodies, we studied the distribution of the 68 kDa protein in larval flagellated cells and its fate at successive stages of metamorphosis. In juvenile sponges just after metamorphosis the choanocytes and the upper pinacoderm were labelled with both antibodies. In larval flagellated cells, the 68 kDa protein was found all over the cytoplasm appearing as granules, while in adult sponges, it was present in the apical part of choanocytes in the vicinity of collars. Direct participation of the larval flagellated cells in the development of definitive structures was demonstrated.  相似文献   

3.
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.  相似文献   

4.
The calcareous sponge Leucosolenia laxa releases free-swimming hollow larvae called coeloblastulae that are the characteristic larvae of the subclass Calcinea. Although the coeloblastula is a major type of sponge larva, our knowledge about its development is scanty. Detailed electron microscopic studies on the metamorphosis of the coeloblastula revealed that the larva consists of four types of cells: flagellated cells, bottle cells, vesicular cells, and free cells in a central cavity. The flagellated cells, the principal cell type of the larva, are arranged in a pseudostratified layer around a large central cavity. The larval flagellated cells characteristically have glutinous granules that are used as internal markers during metamorphosis. After a free-swimming period the larva settles on the substratum, and settlement apparently triggers the initiation of metamorphosis. The larval flagellated cells soon lose their flagellum and begin the process of dedifferentiation. Then the larva becomes a mass of dedifferentiated cells in which many autophagosomes are found. Within 18 h after settlement, the cells at the surface of the cell mass differentiate to pinacocytes. The cells beneath the pinacoderm differentiate to scleroblasts that form triradiate spicules. Finally, the cells of the inner cell mass differentiate to choanocytes and are arranged in a choanoderm that surrounds a newly formed large gastral cavity. We found glutinous granules in these three principal cell types of juvenile sponges, thus indicating the multipotency of the flagellated cells of the coeloblastula.  相似文献   

5.
In the marine hydroid Hydractinia echinata, metamorphosis transforms the spindle-shaped larva into a primary polyp. It bears a hypostome with a ring of tentacles at its apical end, a gastric region in the middle and stolons at the base. In nature, metamorphosis is induced in response to external stimuli provided by bacteria. These stimuli can be replaced by artificial inducers, one of which is heat shock. Among heat shock treated stages are those undergoing complete metamorphosis but also specimens forming chimeras of different developmental stages. In the chimeric larvae, the posterior is transformed into the apical hypostome of the adult polyp while the anterior part of the larva persists as larval tissue. After transverse sectioning, these stage chimeras regenerate the missing body parts with respect to the nature of the tissue at the wound surface. This shows that the decision to make larva or polyp morphology depends not on the majority of the tissue in the original body section, but on stage specificity within the regenerating animal part. Single cells can escape from this general rule, since RFamide nerve cells which usually differentiate in polyp tissue appear in regenerated larval tails of sectioned stage chimeras. The results indicate that the pattern-forming system of the larva and of the adult have features in common. The primary signals controlling patterning along the anterior-posterior axis in larvae and the apical-basal axis in polyps arethus likelyto be the same while the interpretation of these primary signals by the individual cells changes during metamorphosis.  相似文献   

6.
The tissue of glass sponges (Class Hexactinellida) is unique among metazoans in being largely syncytial, a state that arises during early embryogenesis when blastomeres fuse. In addition, hexactinellids are one of only two poriferan groups that already have clearly formed flagellated chambers as larvae. The fate of the larval chambers and of other tissues during metamorphosis is unknown. One species of hexactinellid, Oopsacas minuta, is found in submarine caves in the Mediterranean and is reproductive year round, which facilitates developmental studies; however, describing metamorphosis has been a challenge because the syncytial nature of the tissue makes it difficult to trace the fates using conventional cell tracking markers. We used three‐dimensional models to map the fate of larval tissues of O. minuta through metamorphosis and provide the first detailed account of larval tissue reorganization at metamorphosis of a glass sponge larva. Larvae settle on their anterior swimming pole or on one side. The multiciliated cells that formed a belt around the larva are discarded during the first stage of metamorphosis. We found that larval flagellated chambers are retained throughout metamorphosis and become the kernels of the first pumping chambers of the juvenile sponge. As larvae of O. minuta settle, larval chambers are enlarged by syncytial tissues containing yolk inclusions. Lipid inclusions at the basal attachment site gradually became smaller during the six weeks of our study. In O. minuta, the flagellated chambers that differentiate in the larva become the post‐metamorphic flagellated chambers, which corroborate the view that internalization of these chambers during embryogenesis is a process that resembles gastrulation processes in other animals.  相似文献   

7.
The larval epithelium of the sea urchin, Lytechinus pictus, consists of squamous cells and bands of columnar epithelial cells bearing cilia. During metamorphosis this tissue undergoes a series of rapid, complex changes. Through the scanning and transmission electron microscope, we describe and analyse these changes. The changes can be divided into three steps. (1) The larval arms bend away from the left side of the larva, exposing the urchin rudiment. Cells which are identical to smooth muscle cells are in a position to bring about this bending. (2) The squamous epithelial cells assume a cuboidal shape. This change in shape results in the collapse of the larval epithelium onto the presumptive aboral surface. These cells possess a subapical band of microfilaments. The cellular shape change but not the bending of the arms is reversibly inhibited by Cytochalasin B. These observations suggest a mechanism for this change. (3) The former lining of the vestibule of the urchin rudiment comes to lie over the collapsed larval tissue and forms the adult epithelium. At this point, after only one hour, the larva has assumed the external shape of an adult sea urchin.  相似文献   

8.
Metamorphosis of the sea lamprey, Petromyzon marinus, is a true metamorphosis. The larval lamprey is a filter-feeder who dwells in the silt of freshwater streams and the adult is an active predator found in large lakes or the sea. The transformation usually occurs in the fifth or sixth year of life. Enlargement of the eye has been long accepted as a distinctive indication of metamorphosis in the sea lamprey, but it had been thought that this was because eye development in the larva was arrested after the formation of only the small central region. Recent studies indicate that all of the retina begins its development in the larva and that ganglion, amacrine, and horizontal cells differentiate in the peripheral retina of the larva. Retinal development is arrested during the premetamorphic period, to be resumed during metamorphosis. Metamorphic contributions include the differentiation of photoreceptor and bipolar cells. With the early appearance of ganglion cells, retinal pathways to the thalamus and tectum are established in larvae, as is a centripetal pathway. Tectal development spans the larval period but a spurt in tectal growth and differentiation is correlated with the completion of the retinal circuitry late in metamorphosis. The metamorphic changes in retina and tectum complete the functional development of the visual system and provide for the adult lamprey's predatory and reproductive behavior.  相似文献   

9.
The recent morphological and experimental data concerning the involvement of flagellated cells in sponge larvae are contradictory and testify to or against the germinal layers inversion. A study of morphogenetic processes in sponges, in particular larval metamorphosis, is complicated by difficulties in identification and succession of certain cell types. It is possible to trace the destiny of flagellated and other larval cells by marking them with antibodies (AB) specified for each cell type. We separated larval and adult sponge cells of Halisarca dujardini in percoll density gradient and obtained polyclonal AB for the majority of these cell types. The protein pattern of larval flagellated cells differed significantly from that of other cell types. The major proteins of flagellated, collencyte-like and spherulous cells were used to raise the corresponding AB. Immunoblot showed all AB to be specific for certain proteins and suitable for immunofluorescence. The AB for flagellated cells reacted with the apical cytoplasm, but not with the flagellum, the AB for major protein of collencyte-like cells stained cytoplasm granules. The AB for spherulous cells of the adult sponge reacted with larval spherulous cells supposed to be of maternal origin. So, the method of cell marking with specific polyclonal AB can facilitate analysis of the layers inversion problem, as well as elucidate the degree of cell differentiation in larvae, their conformity to cells of the adult sponge or their provisional destiny.  相似文献   

10.
Abstract. Embryonic development from coeloblastula to fully developed larva was investigated in 8 Mediterranean homoscleromorph species: Oscarella lobularis, O. tuberculata, O. microlobata, O. imperialis, Plakina trilopha, P. jani, Corticium candelabrum , and Pseudocorticium jarrei. Morphogenesis of the larva is similar in all these species; however, cell proliferation is more active in species of Oscarella than in Plakina and C. candelabrum. The result of cell division is a wrinkled, flagellated larva, called a cinctoblastula. It is composed of a columnar epithelium of polarized, monoflagellated cells among which are scattered a few non-flagellated ovoid cells. The central cavity always contains symbiotic bacteria. Maternal cells are also present in O. lobularis, O. imperialis , and P. jarrei. In the fully developed larva, cell shape and dimensions are constant for each species. The cells of the anterior pole have large vacuoles with heterogeneous material; those of the postero-lateral zone have an intranuclear paracrystalline inclusion; and the flagellated cells of the posterior pole have large osmiophilic inclusions. Intercellular junctions join the apical parts of the cells, beneath which are other specialized cell junctions. A basement membrane underlying the flagellated cells lines the larval cavity. This is the first observation of a basement membrane in a poriferan larva. The basal apparatus of flagellated cells is characterized by an accessory centriole located exactly beneath the basal body. The single basal rootlet is cross striated. The presence of a basement membrane and a true epithelium in the larva of Homoscleromorpha—unique among poriferan clades and shared with Eumetazoa—suggests that Demospongiae could be paraphyletic.  相似文献   

11.
Abstract. Early development and metamorphosis of Reniera sp., a haplosclerid demosponge, have been examined to determine how gastrulation occurs in this species, and whether there is an inversion of the primary germ layers at metamorphosis. Embryogenesis occurs by unequal cleavage of blastomeres to form a solid blastula consisting micro- and macromeres; multipolar migration of the micromeres to the surface of the embryo results in a bi-layered embryo and is interpreted as gastrulation. Polarity of the embryo is determined by the movement of pigment-containing micromeres to one pole of the embryo; this pole later becomes the posterior pole of the swimming larva. The bi-layered larva has a fully differentiated monociliated outer cell layer, and a solid interior of various cell types surrounded by dense collagen. The pigmented cells at the posterior pole give rise to long cilia that are capable of responding to environmental stimuli. Larvae settle on their anterior pole. Fluorescent labeling of the monociliated outer cell layer with a cell-lineage marker (CMFDA) demonstrates that the monociliated cells resorb their cilia, migrate inwards, and transdifferentiate into the choanocytes of the juvenile sponge, and into other amoeboid cells. The development of the flagellated choanocytes and other cells in the juvenile from the monociliated outer layer of this sponge's larva is interpreted as the dedifferentiation of fully differentiated larval cells—a process seen during the metamorphosis of other ciliated invertebrate larvae—not as inversion of the primary germ layers. These results suggest that the sequences of development in this haplosclerid demosponge are not very different than those observed in many cnidarians.  相似文献   

12.
13.
The Drosophila larval and adult midguts are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact “yellow body.” The formation of a pupal midgut has been reported from several other species and may represent a general feature of intestinal metamorphosis in insects.  相似文献   

14.
The larval development ofPhoronis psammophila Cori is divided into 6 phases (on the basis of increasing pairs of larval tentacles); furthermore an initial and a ripe phase are distinguished. Specific aspects of the development are described: Formation and structure of larval tentacles; anlage of adult tentacles as a thickening in the larval tentacle base; late development of the metasome (larva with 4–6 tentacles); formation of the metasome pouch in the larva with 8 tentacles; enlargement of the apical plate; differentiation of the gut; differentiation of larval nephridia; formation of pigment particles in the larva with 6 tentacles (storage function of pigments and its significance for larval identification); different types of discoflagella in various regions of the body. The larval development shows the following tendencies: Improvement of locomotion; intensification of food filtration; anlage of adult organs in the larva leading to a shortening of metamorphosis duration. The larva ofP. psammophila is compared with those ofP. pallida, P. hippocrepia, andP. vancouverensis. Earlier larval determinations ofP. psammophila (e.g.Actinotrocha sabatieri, A. hatschekii) are shown to have been mistakes. Termination of the postembryonic phase (metamorphosis) can be induced experimentally by bacteria and also by cations. Pure or mixed bacteria cultures must be present at the beginning exponential growth phase. The bacteria density required is 20–94×106 bact.ml?1 for pure cultures and on the average 28×106 bact. ml?1 for mixed cultures. Metamorphosis initiation by cations can be induced with CsCl (0.06 M) and RbCl (0.035 M). Metamorphosis ofP. psammophila occurs in 6 phases: larva, ready for metamorphosis; larva, activated by bacteria or ions; evagination of the metasome diverticle, dislocation of gut; losing and swallowing of episphaere and larval tentacles; formation of the youngP. psammophila. All developmental phases are described and compared with those ofP. muelleri; imperfect metamorphosis is characterized and the youngP. psammophila compared with older stages and the adult Phoronis.  相似文献   

15.
Metamorphosis of the central nervous system of Drosophila   总被引:2,自引:0,他引:2  
The study of the metamorphosis of the central nervous system of Drosophila focused on the ventral CNS. Many larval neurons are conserved through metamorphosis but they show pronounced remodeling of both central and peripheral processes. In general, transmitter expression appears to be conserved through metamorphosis but there are some examples of possible changes. Large numbers of new, adult-specific neurons are added to this basic complement of persisting larval cells. These cells are produced during larval life by embryonic neuroblasts that had persisted into the larval stage. These new neurons arrest their development soon after their birth but then mature into functional neurons during metamorphosis. Programmed cell death is also important for sculpting the adult CNS. One round of cell death occurs shortly after pupariation and a second one after the emergence of the adult fly.  相似文献   

16.
Larval behavior and metamorphosis in Parasmittina nitida morphotypeB from the Gulf of Mexico has been studied. The larvae havetwo basic types of movement: (1) a clockwise-counterclockwisemovement about the aboral-oral axis of the lobular larval formresulting in either slow horizontal or rapid vertical movement,and (2) a directed horizontal movement of the creeping larvalform, whereby either the oral lobe is pressed against the substrateor the aboral-oral axis is tilted forward. In both forms, thevibratile plume of the pyriform organ complex extends the leadingedge of the larva. Metamorphosis was observed with Nomarskidifferential interference microscopy in living specimens andwith scanning electron microscopy in fixed specimens. Polypidedevelopment— in particular, the formation and diminutionof the nutritive mass, the differentiation of the polypide rudiment,diaphragm, vestibular glands, operculum, major components ofthe musculature and alimentary canal, and the early stages ofastogenetic growth—is described. The tata ancestrula ofthis species is characterized by a frontal wall calcified distallyto the aperture, which is surrounded by nine erect spines. Thepolypide feeds actively within seven to eight days after theonset of larval attachment and metamorphosis under laboratoryconditions of 22°C.  相似文献   

17.
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding--lecithotrophic--larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.  相似文献   

18.
Swalla BJ 《Heredity》2006,97(3):235-243
Deuterostome animals exhibit widely divergent body plans. Echinoderms have either radial or bilateral symmetry, hemichordates include bilateral enteropneust worms and colonial pterobranchs, and chordates possess a defined dorsal-ventral axis imposed on their anterior-posterior axis. Tunicates are chordates only as larvae, following metamorphosis the adults acquire a body plan unique for the deuterostomes. This paper examines larval and adult body plans in the deuterostomes and discusses two distinct ways of evolving divergent body plans. First, echinoderms and hemichordates have similar feeding larvae, but build a new adult body within or around their larvae. In hemichordates and many direct-developing echinoderms, the adult is built onto the larva, with the larval axes becoming the adult axes and the larval mouth becoming the adult mouth. In contrast, indirect-developing echinoderms undergo radical metamorphosis where adult axes are not the same as larval axes. A second way of evolving a divergent body plan is to become colonial, as seen in hemichordates and tunicates. Early embryonic development and gastrulation are similar in all deuterostomes, but, in chordates, the anterior-posterior axis is established at right angles to the animal-vegetal axis, in contrast to hemichordates and indirect-developing echinoderms. Hox gene sequences and anterior-posterior expression patterns illuminate deuterostome phylogenetic relationships and the evolution of unique adult body plans within monophyletic groups. Many genes that are considered vertebrate 'mesodermal' genes, such as nodal and brachyury T, are likely to ancestrally have been involved in the formation of the mouth and anus, and later were evolutionarily co-opted into mesoderm during vertebrate development.  相似文献   

19.
20.
Summary We have developed an organ culture system of the anuran small intestine to reproduce in vitro the transition from larval to adult epithelial form which occurs during spontaneous metamorphosis. Tubular fragments isolated from the small intestine ofXenopus laevis tadpoles were slit open and placed on membrane filters in culture dishes. In 60% Leibovitz 15 medium supplemented with 10% charcoal-treated serum, the explants were maintained in good condition for at least 10 days without any morphologic changes. Addition of triiodothyronine (T3) at a concentration higher than 10−9 M to the medium could induce cell death of larval epithelial cells, but T3 alone was not sufficient for proliferation and differentiation of adult epithelial cells. When insulin (5 μg/ml) and cortisol (0.5 μg/ml) besides T3 were added, the adult cells proliferated and differentiated just as during spontaneous metamorphosis. On Day 5 of cultivation, the adult cells rapidly proliferated to form typical islets, whereas the larval ones rapidly degenerated. At the same time, the connective tissue beneath the epithelium suddenly increased in cell density. These changes correspond to those occurring at the onset of metamorphic climax. By Day 10, the adult cells differentiated into a simple columnar epithelium which possessed the brush border and showed the adult-type lectin-binding pattern. Therefore, the larval epithelium of the small intestine responded to the hormones and transformed into the adult one. This organ culture system may be useful for clarifying the mechanism of the epithelial transition from larval to adult type during metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号