首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maximum activities of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) in free cultures of Phanerochaete chrysosporium (ATCC 24725) were 258 U l–1 and 103 U l–1, respectively, in an airlift bioreactor. Immobilisation of the fungus on an inert carrier as well as several design modifications of the bioreactor employed gave MnP activities around 500–600 U l–1 during 9 days' operation. The continuous operation of the latter led to MnP and LiP activities about 140 U l–1 and 100 U l–1, respectively, for two months, without operational problems. Furthermore, the extracellular liquid secreted decolourised the polymeric dye Poly R-478 about 56%.  相似文献   

2.
The present work was carried out to determine the optimum culture conditions of Phanerochaete chrysosporium (ATCC 20696) for maximizing ligninolytic enzyme production. Additionally, separation of its lignin peroxidase was conducted. After experiments, an optimized culture medium/condition was constructed (per liter of Kirk’s medium): dextrose 10 g, ammonium tartrate 0.11 g, Tween-80 0.5 g, MnSO4 7 mg, and veratryl alcohol 0.3 g in 10 mM acetic acid buffer pH 4.5. Under the optimized experimental condition, both lignin peroxidase (LiP) and manganese peroxidase (MnP) were detected and reach the highest yield at 30°C on the 8th day culture. Salt precipitation methods was used in the extraction and purification processes. Results show that salt precipitation with 60% (NH4)2SO4 yielded the best result, especially toward LiP. Enzyme separation was conducted and two fractions with LiP activity. LiP1 and LiP2 were produced using three columns sequentially: desalting column, Q FF ion exchange column and Sepharyl S-300 HR gel filtration. LiP1 and LiP2 had been purified by 9.6- and 7.6-fold with a yield of 22.9% and 18.6%, respectively. According to the data of sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE), the molecular weights of the enzymes are 38 kDa and 40 kDa, respectively.  相似文献   

3.
The production of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) by the fungus Phanerochaete chrysosporium (ATCC 24725) in a new bioreactor, the Immersion Bioreactor, which grows cells under solid-state conditions, was studied. Maximum MnP and LiP activities were 987 U l–1 and 356 U l–1, respectively. The polymeric dye, Poly R-478, was degraded at 2.4 mg l–1 min–1 using the extracellular culture filtrate.  相似文献   

4.
The influence of Zn2+ (6.0 × 10–3 –18.0 × 10–3 M) and Cu2+ (4 × 10–4 –1.2 × 10–4 M) in the basal medium on mycelial growth (dry weight), activities of lignin peroxidase (Lip), manganese peroxidase (Mnp), solubilization, and mineralization (14CO2 evolution) of lignin during a period of 3 weeks was studied in Phanerochaete chrysosporium strain MTCC-787. Highest mycelial growth was obtained at 0.6 M Zn2+ and 0.4 M Cu2+ levels. Enzyme activities were found to increase up to the highest levels of both the trace elements. However, Zn2+ had a relatively more stimulatory effect on Lip production and the reverse was true in case of Cu2+. [14C]Lignin solubilization was also promoted by higher levels of both trace elements. Mineralization of [14C]lignin was optimal at 6.0 M Zn2+ and 1.2 M Cu2+. The stimulatory effect of Zn2+ on Lip production was correlated with higher rates of [14C]lignin mineralization.  相似文献   

5.
The ligninolytic white-rot fungus Phanerochaete chrysosporium BKM-F-1767 produced extracellular cellulolytic enzymes (carboxymethylcellulase, CMCase and -glucosidase) and xylanolytic enzymes (xylanase and -xylosidase) in liquid medium containing 1.0% sugarcane bagasse with or without 1.0% glucose. The changes in pH and soluble protein content were monitored in the culture filtrates. The results obtained showed that the pH decreased after 3 days and then increased. The soluble protein content increased and reached the maximum value after 12 days. The results showed that the activities of enzymes were higher in the case of sugarcane bagasse without glucose. The characterization study indicated that the optimum pH values were 4.6, 4.2, 5.0 and 5.0 for CMCase, -glucosidase, xylanase and -xylosidase, respectively and the optimum temperatures were 60, 70, 65 and 60 °C for the investigated enzymes, respectively. The results showed also that after prolonged heating (5 h) at 60 °C, CMCase, -glucosidase, xylanase and -xylosidase retained 81.2, 86.8, 51.5 and 27.4% activity, respectively.  相似文献   

6.
The degradation of the phenylcoumaran substructure model compound methyl dehydrodiconiferyl alcohol by the white-rot wood decay fungus Phanerochaete chrysosporium was investigated using culture conditions optimized for lignin oxidation. Initial attack was in the cinnamyl alcohol side chain, which was oxidized to a glycerol structure. This was subsequently converted by loss of the two terminal carbon atoms, C and C, to yield a C-aldehyde structure, which was further oxidized to the C-acid compound. The next detected intermediate, a phenylcoumarone, was produced by double bond formation between C and C, and oxidation of the C-alcohol to an aldehyde group. Further oxidation of C to an acid yielded the next intermediate. The final identified degradation product was veratric acid. No products from the 5-substituted aromatic ring, and no phenolic products, were found. The initial glycerol-containing intermediate was a mixture of the threo and erythro forms, and no optical activity could be found, suggesting that its formation might have involved nonstereospecific C-C epoxidation followed by non-enzymatic hydrolysis of the epoxide.Abbreviations TLC thin layer chromatography - LDA lithium diisopropyl amide - DDQ 2,3-dichloro-5,6-dicyanobenzoquinone - MS mass spectrometry - UV ultraviolet spectroscopy  相似文献   

7.
Ligninolytic enzyme production by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor precultivated with different insoluble lignocellulosic materials (grape seeds, barley bran and wood shavings) was investigated. Cultures of Phanerochaete chrysosporium precultivated with grape seeds and barley bran showed maximum lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) activities (1000 and 1232 U/l, respectively). Trametes versicolor precultivated with the same lignocellulosic residues showed the maximum laccase activity (around 250 U/l). For both fungi, the ligninolytic activities were about two-fold higher than those attained in the control cultures. In vitro decolorization of the polymeric dye Poly R-478 by the extracellular liquid obtained in the above-mentioned cultures was monitored in order to determine the respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading capability of LiP when P. chrysosporium was precultivated with barley bran gave a percentage of Poly R-478 decolorization of about 80% in 100 s, whereas control cultures showed a lower percentage, around 20%, after 2 min of the decolorization reaction.  相似文献   

8.
Abstract Four major hemoproteins were purified by isoelectric focusing from an extracellular crude enzyme preparation, produced by the white rot fungus Phanerochaete chrysosporium under carbon-limited conditions. Both the crude enzyme and the purified proteins oxidised milled wood lignin, HCl-dioxane-extracted straw lignin and alkali straw lignin in the presence of hydrogen peroxide. The oxidation resulted mainly in further polymerisation of the lignins and was enhanced by addition of veratryl alcohol to the reaction mixture. Alkali straw lignin was also polymerised by horseradish peroxidase, although veratryl alcohol had no influence on this reaction.  相似文献   

9.
Removal and degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in static flask cultures was studied using ammonium lignosulphonates (LS), a waste product of the papermill industry, as a carbon and nitrogen source. After 3 days, cultures of P. chrysosporium grown in either a 2% LS (nitrogen-sufficient) medium or a 0.23% LS and 2% glucose (nitrogen-deficient) medium removed 72 to 75% of PCP, slightly less than the 95% removal seen using nitrogen-deficient glucose and ammonia medium. PCP dehalogenation occurred despite the fact that extracellular enzyme (LiP) activity, measured by a veratryl alcohol oxidation assay and by PCP disappearance in cell-free extracts, was inhibited by LS. This inactivation of LiP likely contributed to the lower percent of PCP dehalogenation observed using the LS media. In order to better understand the relationship between PCP disappearance and dehalogenation, we measured the fate of the chlorine in PCP. After 13 days, only 1.8% of the initial PCP added was recoverable as PCP. The remainder of the PCP was either mineralized or transformed to breakdown intermediates collectively identified as organic halides. The largest fraction of the original chlorine (58%) was recovered as organic (non-PCP) halide, most of which (73%) was associated with the cell mass. Of the remaining chlorine, 40% was released as chloride ion, indicating a level of dehalogenation in agreement with previously reported values.  相似文献   

10.
11.
The degradation rate of [synthetic-14C]-lignin to 14CO2 by Phanerochaete chrysosporium in cultures buffered with 0.01 M 2,2-dimethylsuccinate (DMS) was twice that in 0.01 M o-phthalate-buffered cultures. This difference could be totally accounted for by o-phthalate inhibition of the activity of the ligninolytic system. 14CO2 production from ring-, sidechain-, and methoxyl-labeled lignins was inhibited, the degree of inhibition being dependent on o-phthalate concentration. Oxidations of 14C-glucose, 14C-acetovanillone, and 14C-apocynol were not inhibited; thus o-phthalate is not a general inhibitor, and might inhibit activities involved in attack of the lignin polymer. DMS is a suitable buffer for the ligninolytic system. Degradation rates of ring-labeled lignin to 14CO2 of 10–15% in 24 h were obtained consistently over the pH range 3.6–4.5, with an optimum near pH 4.0.Non-Standard Abbreviations DMS dimethylsuccinate  相似文献   

12.
Primary and secondary extracellular proteases produced by free or immobilized cells of the white-rot fungus Phanerochaete chrysosporium have been studied in relation to lignin peroxidase (LiP) decay. Proteases produced during primary metabolism exhibited a maximum activity on day 2; they could totally inactivate LiP activity and partially fragment LiP. Proteases produced during secondary metabolism did not inactivate or decay LiP.These proteases most likely are aspartic- and thiol-proteases.  相似文献   

13.
Adenylate cyclase activity in Phanerochaete chrysosporium was present in cell fractions sedimenting at 1,000xg, 15,000xg, and in the 150,000xg supernatant. A small amount of activity in the 1,000xg pellet could be solubilised by treatment with Triton X-100, and the enzyme in all fractions required an ATP-Mn2+ substrate. Adenylate cyclase activity in the 150,000xg pellet was low (0.003 nmol/mg protein·min) and may have resulted from contamination by other fractions. Highest adenylate cyclase specific activity (0.37 nmol/mg protein ·min) was recorded in the 150,000xg supernatant at the onset of idiophasic metabolism. During this growth phase, adenylate cyclase activity also increased in the 1,000xg pellet and was maximally 4.5-fold greater than that in primary phase cultures. No significant cAMP-phosphodiesterase activity could be detected during growht in any of the cell fractions or in the growth medium with either Mn2+, Mg2+, or Ca2+ as added cations. The extracellular cAMP concentration increased logarithmically during primary growth; however, in cultures in idiophasic metabolism cAMP levels remained constant and relatively low. We suggest that excretion into the medium is the principal means by which intracellular cAMP levels are decreased in P. chrysosporium.Abbreviation EB extraction buffer  相似文献   

14.
A soluble enzyme fraction from Phanerochaete chrysosporium catalyzed the oxidative decarboxylation of vanillic acid to methoxy-p-hydroquinone. The enzyme, partially purified by ammonium sulfate precipitation, required NADPH and molecular oxygen for activity. NADH was not effective. Optimal activity was displayed between pH 7.5–8.5. Neither EDTA, KCN, NaN3, nor o-phenanthroline (5 mM) were inhibitory. The enzyme was inducible with maximal activity displayed after incubation of previously grown cells with 0.1% vanillate for 30h.Abbreviations MHQ Methoxy-p-hydroquinone - GLC gas liquid chromatography - TMSi trimethylsilane - TLC thin layer chromatography  相似文献   

15.
A pleiotropic mutant of Phanerochaete chrysosporium 104-2 lacking phenol oxidase and unable to form fruit bodies and a revertant strain 424-2 were isolated after UV mutagenesis. Strains 104-2 and 424-2 had no apparent dysfunction in primary metabolism with glucose as a carbon source. Unlike the wild type strain and strain 424-2, strain 104-2 was unable to evolve 14CO2 from 14C ring, side chain and 3-O-14C-methoxy labeled lignin. In addition, strain 104-2 was unable to evolve 14CO2 from a variety of lignin model compounds including 14C-4-methoxy labeled veratrylglycerol--guaiacyl (V) ether, -14C-guaiacylglycerol--guaiacyl ether (VI), as well as 1-(14C-4-methoxy, 3-methoxyphenyl)1,2 propene (III) and 1-(14C-4-methoxy-3-methoxyphenyl) 1,2 dihydroxypropane (IV). The addition of peroxidase/H2O2 to cultures of strain 104-2 did not alter its capacity to degrade the labeled lignins. A variety of unlabeled lignin model compounds previously shown to be degraded by the wild type organism including -aryl ether dimers and diaryl propane dimers were also not degraded by the mutant 104-2. The revertant strain 424-2 regained the capacity to degrade these compounds. The substrates described are degraded by oxygen requiring system(s) expressed during the secondary phase of growth, suggesting this pleiotropic mutant is possibly defective in the onset of postprimary metabolism. The inability of the mutant to produce the secondary metabolite veratryl alcohol and to elaborate enzymes in the veratryl alcohol biosynthetic pathway supports this hypothesis.Abbreviations GLC gas liquid chromatography - TMSi trimethylsilyl - MS mass spectrometry - LDS lignin degrading system  相似文献   

16.
Summary To reduce and eliminate the hazards of pentachlorophenol (PCP) to the soil, the method of inoculating free and immobilized white rot fungi, Phanerochaete chrysosporium to PCP-polluted soils was investigated. Three parallel beakers A, B, C are adopted with the same components of soil, yard waste, straw and bran for aerated composting to degrade the PCP in soil. A was with no inoculants as control, B was added with the inoculants of immobilized P.␣chrysosporium, C was inoculated with non-immobilized P. chrysosporium, and additionally D contained only PCP-contaminated soils also as control. By contrastive analyses, the feasibility of applying composting to the bioremediation of the PCP-polluted soil was discussed. From the experimental results, it could be seen that the degradation rate of PCP by the immobilized fungi exceeded 50% at day 9, while that of the non-immobilized fungi achieved the same rate at day 16. However, the final degradation rates of PCP for both of them were beyond 90% at day 60 and that the rate of A was much lower than the others. The above data have shown that the degradation effect of inoculating P. chrysosporium was better than that of no inoculation, and that of the immobilized fungi was better than that of non-immobilized ones. Meanwhile, shown by all the indicators the composts of A, B and C were mature and stabilized at the end of the experiment. Therefore, the method of composting with immobilized P.␣chrysosporium is effective for the bioremediation of PCP-contaminated soil.  相似文献   

17.
Wang H  Lu F  Sun Y  Du L 《Biotechnology letters》2004,26(20):1569-1573
The cDNA encoding for lignin peroxidase of Phanerochaete chrysosporium was expressed in the Pichia methanolica under the control of the alcohol oxidase (AUG1) promoter which was followed by either the lignin peroxidase leader peptide of Phanerochaete chrysosporium or the Saccharomyces cerevisiae alpha-factor signal peptide. Both peptides efficiently directed the secretion of lignin peroxidase from the recombinant yeast cell. The extracellular lignin peroxidase activity in two recombinants was 932 U l(-1) and 1933 U l(-1). The purity of the recombinant product was confirmed by SDS-PAGE.  相似文献   

18.
Kinetics of endosulfan degradation by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The chlorinated pesticide, endosulfan, could be degraded by Phanerochaete chrysosporium under non-ligninolytic conditions, and this did not require direct contact with mycelium. The major metabolites formed were endosulfan sulfate and endosulfan diol. The rate of degradation depended on the initial concentration. With 2.5 mg endosulfan l–1, degradation was at 0.23 mg l–1 day–1. The degradation could be described using a nonlinear rate expression that was similar to the Michaelis–Menten equation.  相似文献   

19.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号