首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An RFLP analysis of the chloroplast genetrnK of 32 species of the generaPapaver, Roemeria, Stylomecon, andMeconopsis leads to the following conclusions: (1) AsianMeconopsis consists of two distinct clades and is paraphyletic in relation toPapaver, Roemeria, Stylomecon, and the W EuropeanMeconopsis cambrica. (2) Sister group relationships ofRoemeria toPapaver sect.Argemonidium and ofStylomecon toPapaver californicum are well-supported. (3)Meconopsis cambrica is nested withinPapaver (incl.Roemeria andStylomecon). The consideration of morphology, geographical distribution and ecology leads to the conclusion thatM. cambrica is best regarded as a member ofMeconopsis, and thatPapaver arose polyphyletically from within a paraphyleticMeconopsis in response to Tertiary climatic aridification. — The removal ofM. cambrica from the taxon matrix is discussed. It is concluded that this experiment illuminates the importance of critical taxon sampling, and shows that at least potentially the assessment of taxa as mono-, para-, or polyphyletic may characterize their present status only and need not reflect their phylogenetic history.  相似文献   

3.
葛学军 《植物研究》1996,16(3):305-309
我国有罂粟属植物12种,新疆有10种,其中6种属于高山罂粟组。对新疆高山罂粟组植物的花葶进行了解剖研究,并用扫描电镜观察了花粉形态,结果表明,花葶中维管束的数量及排列方式在各种间存在着差异,可以作为一个鉴定特征。花粉上的小刺密度在放大12000倍时,在有种间存在着明显差异,可分类提供微观佐证。  相似文献   

4.
Iva s.str. (comprising ten species) was examined by cpDNA restriction site variation to determine phyletic relationships within the group. The results were compared with relationships proposed from other data. A total of 86 restriction site mutations was detected, 47 of which proved phylogenetically informative. A single most parsimonious tree was obtained using both Wagner and Dollo parsimony. The tree revealed three main lineages that are congruent with the three chromosome lineages (base numbers of x = 16, 17, 18). The monophyly of the x = 16 and 18 groups was supported strongly by molecular data, while the monophyly of x = 17 lineage was only supported moderately. Relationships among the three lineages indicate that the sect.Iva is paraphyletic because sect.Linearbractea is nested within it. Both morphological data and the secondary chemical data are in agreement with the proposed cpDNA phylogeny. Because of this agreement, sect.Iva is revised such that,I. axillaris was excluded and positioned within the newly proposed sect.Rhizoma. Patterns and rates of cpDNA evolution were also examined. The results indicated an uneven evolution in the chloroplast genome with different rates of cpDNA evolution in at least a few species ofIva. However, the evolutionary clock hypothesis can not be rejected within most of the lineages inIva.  相似文献   

5.
Phylogenetic analysis of plastid DNA restriction site and rearrangement mutations suggests a number of major revisions to taxonomy and phylogenetic concepts in the hard pines. Total genomic DNA from 18 species that sampled all nine subsections was digested with 19 restriction enzymes, blotted, and probed with 70% of the Douglas-fir (Pseudotsuga menziesii) chloroplast genome, or, with clones encompassing the entire chloroplast genome of Pinus contorta. A total of 204 site mutations and five rearrangement mutations were generated, of which 126 were phylogenetically informative. Wagner parsimony analyses revealed 11 clades that were strongly supported by bootstrap and decay index analyses. All North American species except P. resinosa formed a distinct monophyletic group that was strongly separated from the Eurasian species. Within the Eurasian clade subsect. Sylvestres was polyphyletic; its Mediterranean species were closely allied with members of sect. Pinea. Sect. Pinea appeared polyphyletic as well; both species of its subsect. Leiophyllae showed a close affinity to Mesoamerican pines of subsect. Oocarpae in sect. Pinus. Within the North American pines subsects. Ponderosae and Oocarpae were polyphyletic. Despite its shallow fossil record, subsect. Contortae emerged as a sister group to all of the North American pines apart from P. resinosa, which was allied with Eurasian species of subsect. Sylvestres. The remaining North American subsections formed two groups: a poorly resolved clade with subsects. Ponderosae and Sabinianae, and sequentially nested clades represented by: P. radiata; P. taeda; representatives of subsects. Oocarpae and Ponderosae from Mesoamerica, and subsect. Leiophyllae. We present estimates of divergence times for each of these major clades based on molecular clocks calibrated using two hard pine fossil observations.  相似文献   

6.
A chloroplast DNA restriction site map forRanunculus sceleratus (Ranunculaceae) was constructed using 14 restriction endonucleases. The total size of the chloroplast genome is 152.4kb. No inversions were detected relative to the tobacco chloroplast DNA. Cladistic analyses of chloroplast DNA restriction site polymorphism were employed in order to elucidate the phylogeny among 76 species of the genusRanunculus in a wide sense and one species ofTrautvetteria. A total of 341 informative restriction site changes were detected. Parsimony jackknifing, bootstrapping and decay analysis were undertaken in order to evaluate the amount of support for the monophyletic groups. The results suggest that the analysed species ofRanunculus are divisible into two main clades. Only few of the traditional sections and subgenera ofRanunculus are monophyletic. The genusTrautvetteria is nested within a clade comprising, e.g.Ranunculus cymbalaria, R. andersonii, R. lapponicus andR. ficaria. SubgenusBatrachium lies within a larger clade containing, e.g.R. sceleratus andR. hyperboreus. Contractions of the inverted repeat due to parallel deletions of 200–300 bp close to the JSB have occurred in many clades and the phylogenetic distribution of this size reduction was mapped among the species.  相似文献   

7.
基于matK基因对松属(Pinus L.)白皮松组(sect.Parrya Myre)进行了分子系统发育分析.白皮松组为一个并系类群,因为白松组的成员与该组(包括越南的扁叶松(P.krempfii Lecomte))的亚洲成员形成一个强烈支持的分支(靴带值92%).在这个分支中,白松组的3个代表种形成一个稳定的单系,而白皮松组的亚洲成员之间系统发育关系不明确.扁叶松和西藏白皮松(P. gerardiana Wall.ex D.Don)聚在一起,但只有61%的支持率.虽然在以前4个cpDNA基因序列分析时五针白皮松(P.squamata X.W.Li)与白皮松(P.bungeana Zucc.ex Loud.)和西藏白皮松形成一个单系,但在本文的分析中三者的关系不明确.在邻接树和多数一致简约树上,北美的白皮松组成员形成一个支持率低的分支.北美的subsect.Balfourianae Engelm.亚组(包括P.aristata Engelm.)是一个单系,但支持率较低.美洲另外两个亚组subsect.Cembroides Englem.和subsect.Rzedowskianae Carv.的组间和组内关系不确定,它们在严格一致简约树上形成一个多歧分支.  相似文献   

8.
Prunus subg. Prunus sect. Prunocerasus (Rosaceae) is a North American taxon with 17 commonly recognized taxa. To test the hypothesis of monophyly for the section we sequenced the trnG and rpL16 introns and the trnH-psbA and trnS-trnG intergenic spacers for at least two representatives of each of the five subgenera in Prunus. Additionally we sampled heavily among Prunus subg. Prunus sections Prunus and Armeniaca and Prunus subg. Amygdalus because these groups are putatively most closely related to Prunocerasus. Once monophyly of sect. Prunocerasus was shown we added the sequences of trnL and rpS16 introns and the trnL-trnF spacer in an attempt to increase resolution within the section. The species of sect. Prunocerasus showed an initial split with P. subcordata, the only species from western North America, sister to the rest of the group. The remaining species fell into three primary clades. Within each of the three primary clades there was little phylogenetic resolution. Lastly, we present evidence that P. texana, previously classified in subg. Amygdalus, may be a plum or at least contain a Prunocerasus chloroplast. This is the first phylogenetic hypothesis presented for sect. Prunocerasus, and the clades recovered contrast sharply with previously defined groups based on morphological characters.  相似文献   

9.
The phylogenetic relationship of Iostephane is assessed using data from morphology, flavonoid chemistry, and chloroplast DNA and nuclear ribosomal DNA restriction fragment analysis. Morphological evidence supports placement of Iostephane in subtribe Helianthinae, but fails to clarify the placement of the genus within this assemblage. Further evidence for the placement of Iostephane in subtribe Helianthinae is provided by the presence in all species of the genus of floral flavonoids of the chalcone/aurone type, which provides a distinctive trait for the subtribe within the tribe Heliantheae. Analysis of chloroplast DNA from two species of Iostephane, I. heterophylla and I. madrensis, in comparison to Viguiera and related genera indicates that the restriction site patterns with 16 enzymes for the Iostephane species are virtually identical to one another as well as to those of Viguiera sect. Maculatae. Data from restriction fragment patterns of nuclear rDNA are concordant with the results from chloroplast DNA in suggesting a direct relationship between the two groups. The close phylogenetic relationship between Iostephane and Viguiera sect. Maculatae suggested by the DNA restriction fragment data was not suggested by any other set of data.  相似文献   

10.
基于matK基因的松属白皮松组分子系统发育分析(英文)   总被引:4,自引:0,他引:4  
基于matK基因对松属(Pinus L.)白皮松组(sect.Parrya Myre)进行了分子系统发育分析。白皮松组为一个并系类群,因为白松组的成员与该组(包括越南的扁叶松(P.krempfii Lecomte))的亚洲成员形成一个强烈支持的分支(靴带值92%)。在这个分支中,白松组的3个代表种形成一个稳定的单系,而白皮松组的亚洲成员之间系统发育关系不明确。扁叶松和西藏白皮松(P.gerardiana Wall.ex D.Don)聚在一起,但只有61%的支持率。虽然在以前4个cpDNA基因序列分析时五针白皮松(P.squamata X.W.Li)与白皮松(P.bungeana Zucc.ex Loud.)和西藏白皮松形成一个单系,但在本文的分析中三者的关系不明确。在邻接树和多数一致简约树上,北美的白皮松组成员形成一个支持率低的分支。北美的subsect.Balfourianae Engelm.亚组(包括P.aristata Engelm.)是一个单系,但支持率较低。美洲另外两个亚组subsect.Cembroides Englem.和subsect.Rzedowskianae Carv.的组间和组内关系不确定,它们在严格一致简约树上形成一个多歧分支。  相似文献   

11.
Incongruence between phylogenetic estimates based on nuclear and chloroplast DNA (cpDNA) markers was used to infer that there have been at least two instances of chloroplast transfer, presumably through wide hybridization, in subtribe Helianthinae. One instance involved Simsia dombeyana, which exhibited a cpDNA restriction site phenotype that was markedly divergent from all of the other species of the genus that were surveyed but that matched the restriction site pattern previously reported for South American species of Viguiera. In contrast, analysis of sequence data from the nuclear ribosomal DNA internal transcribed spacer (ITS) region showed Simsia to be entirely monophyletic and placed samples of S. dombeyana as the sister group to the relatively derived S. foetida, a result concordant with morphological information. A sample of a South American species of Viguiera was placed by ITS sequence data as the sister group to a member of V. subg. Amphilepis, which was consistent with cpDNA restriction site data. Samples of Tithonia formed a single monophyletic clade based on ITS sequence data, whereas they were split between two divergent clades based on cpDNA restriction site analysis. The results suggested that cpDNA transfer has occurred between taxa diverged to the level of morphologically distinct genera, and highlight the need for careful and complete assessment of molecular data as a source of phylogenetic information.  相似文献   

12.
Restriction site variation in chloroplast DNA and nuclear ribosomal DNA was examined in 16 accessions from the Salicaceae comprising ten species of Populus and one outgroup species of Salix. Forty-nine restriction site mutations in the chloroplast DNAs were used to generate one most parsimonious phylogenetic tree. This tree indicates that all varieties of P. nigra (black poplars of sect. Aigeiros) have a chloroplast genome, maternally inherited, derived from the clade including the white poplars (P. alba and segregate species of sect. Populus) and divergent from the American cottonwoods of their own section. Twenty-one restriction site mutations in the nuclear ribosomal DNAs generated a single most parsimonious phylogenetic tree that indicates that the nuclear genome ofP. nigra is distinct from both the white poplars and American cottonwoods. The incongruity of these independent molecular phylogenies provides evidence for an unusual origin of the black poplars. Populus alba or its immediate ancestor acted as the maternal parent in a hybridization event with the paternal lineage of P. nigra. Subsequent backcrosses to the paternal species gave rise to the extant P. nigra with a chloroplast genome of P. alba and the nuclear genome of the paternal species. These hybridization and introgression events must have pre-dated the divergence of the black poplar varieties. The biphyletic nature of the P. nigra genomes suggests that dependency on one class of molecular or morphological markers or the merging of the two kinds of data sets to derive accurate estimates of true phylogenies could be misleading in plants.  相似文献   

13.
Chloroplast DNA restriction site variation provided data with which to compare the Galápagos Island endemic Scalesia to potential sister groups within subtribe Helianthinae. Pappobolus is suggested by these data to be the most likely sister group to Scalesia. It is an Andean endemic genus that includes the South American species once regarded as a subgenus of Helianthus and later assigned to Helianthopsis. Two other groups considered as potential sister groups based on their geographic distribution in South America were not placed near Scalesia in the most parsimonious tree. Viguiera sect. Diplostichis appears to be relatively basal within subtribe Helianthinae, and the South American species of Viguiera, although previously classified in more than one subgenus, appear to form a single, monophyletic group that is not the sister group to Scalesia. The minimum of ten restriction site differences between Scalesia and Pappobolus of approximately 525 sites surveyed yielded an estimated sequence divergence of 0.19%, and an estimated time of divergence of approximately 1.9–6.2 million years.  相似文献   

14.
为探讨山茶属茶亚属 (Camellia subgenThea) 中长柄山茶组 (sectLongipedicellata)、金花茶组 (sectChrysantha)和超长柄茶组 (sectLongissima) 的系统位置和亲缘关系,本研究选取了该属4个亚属11组28个种及2个外类群的材料,对这些材料的叶绿体4个DNA片段 (rpl16、psbA trnH、trnL F和rpl32 trnL) 进行了测序,运用邻接法 (neighbor joining)、最大简约法 (maximum parsimony) 和贝叶斯推断 (Bayesian inference) 对获得的序列进行了联合矩阵分析,并构建基因树。基因树的拓扑结构显示:1) 金花茶组包括3个平行的支系,并且长柄山茶组的模式种长柄山茶 (Camellia longipedicellata) 嵌于其中一个支系,因而金花茶组可能是一个并系或多系类群;2) 长柄山茶与越南分布的金花茶组种类在分子系统树上构成一个单系支,暗示了长柄山茶组和金花茶组之间可能具有紧密的亲缘关系;3) 超长柄茶组不是一个单系类群,该组的河口超长柄茶 (C. hekouensis) 位于系统树的基部,与山茶属其余种构成姐妹群。由于缺乏更广泛取样的分析,超长柄茶在山茶属中的系统位置仍然不明确,超长柄茶组与长柄山茶组的亲缘关系问题也没有得到解决。  相似文献   

15.
We focused on the systematic positions and relationships of three sections of Camellia subgenThea of Theaceae, i.e., sect.Longipedicellata, sect.Chrysantha (golden camellias) and sect.Longissima by using four chloroplast DNA regions (rpl16, psbA trnH, trnL F & rpl32 trnL). We sampled 28 species representing four subgenus, 11 sections in Camellia and two outgroups. Combined analyses of chloroplast DNA sequence data sets are performed with the neighbor joining, maximum parsimony and Bayesian inference methods, and the gene trees are constructed. The topologies of gene trees revealed that: 1) sect. Chrysantha is paraphyletic or polyphyletic, containing three parallel lineages and Camellia longipedicellata (type of sectLongipedicellata) nested inside; 2) all four species from Vietnam, together with C. longipedicellata, forming a well supported monophyletic clade, which implies the close relationship between sect. Longipedicellata and sect.Chrysantha; and 3) sectLongissima is not monophyletic because C.hekouensis is the sister to the rest of Camellia species. The systematic position of C.longissima and the relationship between sect.Longissima and sect.Longipedicellata are unsolved.  相似文献   

16.
为探讨山茶属茶亚属(Camellia subgen.Thea)中长柄山茶组(sect.Longipedicellata)、金花茶组(sect.Chrysantha)和超长柄茶组(sect.Longissima)的系统位置和亲缘关系,本研究选取了该属4个亚属11组28个种及2个外类群的材料,对这些材料的叶绿体4个DNA片段(rp/16、psbA-trnH、trnL-F和rp/32-trnL)进行了测序,运用邻接法(neighbor-joining)、最大简约法(maximum-parsimony)和贝叶斯推断(Bayesian inference)对获得的序列进行了联合矩阵分析.并构建基因树.基因树的拓扑结构显示:1)金花茶组包括3个平行的支系,并且长柄山茶组的模式种长柄山茶(Camellia longipedicellata)嵌于其中一个支系,因而金花茶组可能是一个并系或多系类群;2)长柄山茶与越南分布的金花茶组种类在分子系统树上构成一个单系支,暗示了长柄山茶组和金花茶组之间可能具有紧密的亲缘关系;3)超长柄茶组不是一个单系类群,该组的河口超长柄茶(C.hekouensis)位于系统树的基部,与山茶属其余种构成姐妹群.由于缺乏更广泛取样的分析,超长柄茶在山茶属中的系统位置仍然不明确,超长柄茶组与长柄山茶组的亲缘关系问题也没有得到解决.  相似文献   

17.
Capparaceae and Brassicaceae have long been known to be closely related families, with the monophyly of Capparaceae more recently questioned. To elucidate the relationship between Brassicaceae and Capparaceae as well as to address infrafamilial relationships within Capparaceae, we analyzed sequence variation for a large sampling, especially of Capparaceae, of these two families using two chloroplast regions, trnL-trnF and ndhF. Results of parsimony and likelihood analyses strongly support the monophyly of Brassicaceae plus Capparaceae, excluding Forchhammeria, which is clearly placed outside the Brassicaceae and Capparaceae clade and suggest the recognition of three primary clades-Capparaceae subfamily (subf.) Capparoideae, subf. Cleomoideae, and Brassicaceae. Capparaceae monophyly is strongly contradicted with Cleomoideae appearing as sister to Brassicaceae. Two traditionally recognized subfamilies of Capparaceae, Dipterygioideae and Podandrogynoideae, are embedded within Cleomoideae. Whereas habit and some fruit characteristics demarcate the three major clades, floral symmetry, stamen number, leaf type, and fruit type all show homoplasy. Clades within Capparoideae show a biogeographical pattern based on this sampling. These results are consistent with several alternative classification schemes.  相似文献   

18.
19.
The largest section of the genus Saxifraga (Saxifragaceae), sect. Ciliatae, consists of 175 morphologically diverse species. This section is mainly distributed in the Qinghai-Tibetan Plateau and adjacent regions of southwest China and more than 80% of the total number of species are endemic to this region. It remains unknown whether this section is monophyletic and up to now no study has been conducted on the infra-sectional phylogeny. In this study, ITS sequences of the nuclear ribosomal DNA were firstly determined for 33 species mainly from this section and related sections. We further downloaded the corresponding sequences of the same DNA region for the other 22 species of Saxifraga and Mitella from GenBank. All sequences were together used to construct the phy-logenetic trees. The main implications of the phylogenetic analyses include: (1) sect. Ciliatae, as traditionally defined, constitutes as a monophyletic clade and its sister group is a well supported clade that includes species from 8 sections such as sect. Porphyrion, sect. Saxifraga and sect. Mesogyne; (2) three morphological subsections, i.e., subsect. Gemmiparae, subsect. Hirculoideae and subsect. Rosulares were tentatively recovered despite the relatively low statistic bootstrap support for the last one; however, subsect. Flagellares and subsect. Hemi-sphaericae were not recognized as separate entities, and nested within subsect. Gemmiparae; (3) subsect. Hircu-loideae and subsect. Rosulares clustered together as sister subclades while subsect. Gemmiparae diverged early. In addition, our results suggest that the paired variation of ITS sequences in sect. Ciliatae is relatively low between the sampled species in spite of their diverse morphology. It is suggested that such a scenario may mirror rapid speciation in this section that probably trigged by the uplifts of the Qinghai-Tibetan Plateau and the extensive selection pressure under the alpine environments.  相似文献   

20.
Parsimony analysis of 31 sequences of the chloroplast locus ndhF was used to address questions of subfamilial phylogeny in Bromeliaceae. Results presented here are congruent with those from chloroplast DNA restriction site analysis in recognizing a clade containing Bromelioideae and Pitcairnioideae, and in resolving Tillandsioideae near the base of the family. Placements of several taxonomically difficult genera (e.g., Glomeropitcairnia and Navia) corroborate those of traditional treatments; however, these data suggest that Brocchinia (Pitcairnioideae) is the sister group to the remainder of Bromeliaceae. Further evidence for the paraphyly of Pitcairnioideae includes the resolution of Puya as the sister group to Bromelioideae. Implications for taxonomic realignment at the subfamily level are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号