首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

2.
Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 μM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway.  相似文献   

3.
A DNA structure checkpoint can be defined as any checkpoint which responds to changes in the structure of the DNA either through the cell cycle, or in response to outside events such as DNA damage. Genetic analysis of DNA structure checkpoints in fission yeast has identified several distinct pathways responding to different circumstances. Three checkpoints have been identified which inhibit the onset of mitosis. (1) A radiation checkpoint which prevents mitosis after DNA damage. (2) A checkpoint linking S phase and mitosis (the S-M checkpoint) that prevents mitosis when DNA synthesis is incomplete. (3) A checkpoint linking G1 to mitosis (the G1-M checkpoint) that prevents the onset of mitosis in cells which are arrested in the G1 period of the cycle. A large number of genetic loci that are required for these checkpoints have been identified through mutant analysis, and the involvement of the relevant genes with the individual checkpoint pathways has been investigated. The largest class of checkpoint genes, known as the ‘checkpoint rad’ genes, are required for all the DNA structure checkpoints and the evidence suggests that they may also be involved in regulating DNA synthesis following precursor deprivation (hydroxyurea treatment) or when the replication fork encounters DNA damage. In this review, the available genetic and physiological evidence has been interpreted to suggest a close association between the ‘checkpoint rad’ class of gene products and the DNA-protein complexes that regulate and perform DNA synthesis. Biochemical evidence will be required in order to prove or disprove this hypothesis.  相似文献   

4.
DNA topoisomerase II is required in the cell cycle to decatenate intertwined daughter chromatids prior to mitosis. To study the mechanisms that cells use to accomplish timely chromatid decatenation, the activity of a catenation-responsive checkpoint was monitored in human skin fibroblasts with inherited or acquired defects in the DNA damage G2 checkpoint. G2 delay was quantified shortly after a brief incubation with ICRF-193, which blocks the ability of topoisomerase II to decatenate chromatids, or treatment with ionizing radiation (IR), which damages DNA. Both treatments induced G2 delay in normal human fibroblasts. Ataxia telangiectasia fibroblasts with defective G2 checkpoint response to IR displayed normal G2 delay after treatment with ICRF-193, demonstrating that ATM kinase was not required for signaling when chromatid decatenation was blocked. The G2 delay induced by ICRF-193 was reversed by caffeine, indicating that active checkpoint signaling was involved. ICRF-193-induced G2 delay also was independent of p53 function, being evident in cells expressing HPV16E6 to inactivate p53. However, as fibroblasts expressing HPV16E6 aged in culture, they lost the ability to delay entry to mitosis, both after DNA damage and when decatenation was blocked. This age-related loss of G2 delay in response to ICRF-193 and IR in E6-expressing cells was blocked by induction of telomerase. Expression of telomerase also prevented chromosomal destabilization in aging E6-expressing cells. These observations lead to a new model of genetic instability, in which attenuation of G2 decatenatory checkpoint function permits cells to enter mitosis with insufficiently decatenated chromatids, leading to aneuploidy and polyploidy.  相似文献   

5.
DNA topoisomerase II is required in the cell cycle to decatenate intertwined daughter chromatids prior to mitosis. To study the mechanisms that cells use to accomplish timely chromatid decatenation, the activity of a catenation-responsive checkpoint was monitored in human skin fibroblasts with inherited or acquired defects in the DNA damage G2 checkpoint. G2 delay was quantified shortly after a brief incubation with ICRF-193, which blocks the ability of topoisomerase II to decatenate chromatids, or treatment with ionizing radiation (IR), which damages DNA. Both treatments induced G2 delay in normal human fibroblasts. Ataxia telangiectasia fibroblasts with defective G2 checkpoint response to IR displayed normal G2 delay after treatment with ICRF-193, demonstrating that ATM kinase was not required for signaling when chromatid decatenation was blocked. The G2 delay induced by ICRF-193 was reversed by caffeine, indicating that active checkpoint signaling was involved. ICRF-193-induced G2 delay also was independent of p53 function, being evident in cells expressing HPV16E6 to inactivate p53. However, as fibroblasts expressing HPV16E6 aged in culture, they lost the ability to delay entry to mitosis, both after DNA damage and when decatenation was blocked. This age-related loss of G2 delay in response to ICRF-193 and IR in E6-expressing cells was blocked by induction of telomerase. Expression of telomerase also prevented chromosomal destabilization in aging E6-expressing cells. These observations lead to a new model of genetic instability, in which attenuation of G2 decatenatory checkpoint function permits cells to enter mitosis with insufficiently decatenated chromatids, leading to aneuploidy and polyploidy.

Key Words:

Checkpoints, DNA damage, Decatenation, Topoisomerase II, ICRF-193, Radiation  相似文献   

6.
In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).  相似文献   

7.
When early prophase PtK(1) or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple "chromatin modification" checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.  相似文献   

8.
Control of the G2/M transition   总被引:5,自引:0,他引:5  
  相似文献   

9.
BACKGROUND: DNA damage during mitosis triggers an ATM kinase-mediated cell cycle checkpoint pathway in yeast and fly embryos that delays progression through division. Recent data suggest that this is also true for mammals. Here we used laser microsurgery and inhibitors of topoisomerase IIalpha to break DNA in various mammalian cells after they became committed to mitosis. We then followed the fate of these cells and emphasized the timing of mitotic progression, spindle structure, and chromosome behavior. RESULTS: We find that DNA breaks generated during late prophase do not impede entry into prometaphase. If the damage is minor, cells complete mitosis on time. However, more significant damage substantially delays exit from mitosis in many cell types. In human (HeLa, CFPAC-1, and hTERT-RPE) cells, this delay occurs during metaphase, after the formation of a bipolar spindle and the destruction of cyclin A, and it is not dependent on a functional p53 pathway. Pretreating cells with ATM kinase inhibitors does not abrogate the metaphase delay due to chromosome damage. Immunofluorescence studies reveal that cells blocked in metaphase by chromosome damage contain one or more Mad2-positive kinetochores, and the block is rapidly overridden when the cells are microinjected with a dominant-negative construct of Mad2 (Mad2deltaC). CONCLUSIONS: We conclude that the delay in mitosis induced by DNA damage is not due to an ATM-mediated DNA damage checkpoint pathway. Rather, the damage leads to defects in kinetochore attachment and function that, in turn, maintain the intrinsic Mad-2-based spindle assembly checkpoint.  相似文献   

10.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

11.
12.
In the present paper, we report that mitosis is a key step in the cellular response to genotoxic agents in human cells. Cells with damaged DNA recruit γH2AX (phosphorylated histone H2AX), phosphorylate Chk1 (checkpoint kinase 1) and arrest in the G2-phase of the cell cycle. Strikingly, nearly all cells escape the DNA damage checkpoint and become rounded, by a mechanism that correlates with Chk1 dephosphorylation. The rounded cells are alive and in mitosis as measured by low phospho-Tyr15 Cdk1 (cyclin-dependent kinase 1), high Cdk activity, active Plk1 (Polo-like kinase 1) and high phospho-histone H3 signals. This phenomenon is independent of the type of DNA damage, but is dependent on pharmacologically relevant doses of genotoxicity. Entry into mitosis is likely to be caused by checkpoint adaptation, and the HT-29 cell-based model provides a powerful experimental system in which to explore its molecular basis. We propose that mitosis with damaged DNA is a biologically significant event because it may cause genomic rearrangement in cells that survive genotoxic damage.  相似文献   

13.
Cell-cycle progression without an intact microtuble cytoskeleton   总被引:1,自引:0,他引:1  
Uetake Y  Sluder G 《Current biology : CB》2007,17(23):2081-2086
For mammalian somatic cells, the importance of microtubule cytoskeleton integrity during interphase cell-cycle progression is uncertain. The loss, suppression, or stabilization of the microtubule cytoskeleton has been widely reported to cause a G1 arrest in a variable, and often high, proportion of cell populations, suggesting the existence of a "microtubule damage," "microtubule integrity," or "postmitotic" checkpoint in G1 or G2. We found that when normal human cells (hTERT RPE1 and primary fibroblasts) are continuously exposed to nocodazole, they remain in mitosis for 10-48 hr before they slip out of mitosis and arrest in G1; this finding is consistent with previous reports. To eliminate the persistent effects of prolonged mitosis, we isolated anaphase-telophase cells that were just finishing a mitosis of normal duration, then we rapidly and completely disassembled microtubules by chilling the preparations to 0 degrees C for 10 minutes in the continuous presence of nocodazole or colcemid treatment to ensure that the cells entered G1 without a microtubule cytoskeleton. Without microtubules, cells progressed from anaphase to a subsequent mitosis with essentially normal kinetics. Similar results were obtained for cells in which the microtubule cytoskeleton was partially diminished by lower nocodazole doses or augmented and stabilized with taxol. Thus, after a preceding mitosis of normal duration, the integrity of the microtubule cytoskeleton is not subject to checkpoint surveillance, nor is it required for the normal human cell to progress through G1 and the remainder of interphase.  相似文献   

14.
The amount of DNA lesions repaired in G2 and also G2 timing are controlled by the DNA damage-dependent checkpoint. Down syndrome (DS) lymphocytes showed twice as much constitutive DNA damage in G2 than control ones, when recording it as chromosomal aberrations in metaphase, after caffeine-induced checkpoint abrogation. During G2, DS lymphocytes repaired 1.5 times more DNA lesions than control ones. However the DS cells displayed a decreased threshold for checkpoint adaptation, as the spontaneous override of the G2 to mitosis transition block induced by the checkpoint took place in the DS cells when they had three times more DNA lesions than controls. Catalase addition to cultures scavenges hydrogen peroxide diffused from cells, resulting in subsequent intracellular depletion (Antunes and Cadenas, 2000). The intracellular H2O2 level seemed to regulate the G2 checkpoint. Thus, in controls, H2O2 depletion (induced by 3.2-50 microg/mL catalase) prevented its functioning: chromosomal damage increased while G2 shortened. Conversely, in the DS lymphocytes, 12.5 microg/mL catalase lengthened G2 and decreased chromosomal damage, in spite that the amount of DNA repaired in G2 was half of that repaired in the catalase-free DS lymphocytes.  相似文献   

15.
Cell cycle checkpoints that monitor DNA damage and spindle assembly are essential for the maintenance of genetic integrity, and drugs that target these checkpoints are important chemotherapeutic agents. We have examined how cells respond to DNA damage while the spindle-assembly checkpoint is activated. Single cell electrophoresis and phosphorylation of histone H2AX indicated that several chemotherapeutic agents could induce DNA damage during mitotic block. DNA damage during mitotic block triggered CDC2 inactivation, histone H3 dephosphorylation, and chromosome decondensation. Cells did not progress into G1 but seemed to retract to a G2-like state containing 4N DNA content, with stabilized cyclin A and cyclin B1 binding to Thr14/Tyr15-phosphorylated CDC2. The loss of mitotic cells was not due to cell death because there was no discernible effect on caspase-3 activation, DNA fragmentation, or viability. Extensive DNA damage during mitotic block inactivated cyclin B1-CDC2 and prevented G1 entry when the block was removed. The mitotic DNA damage responses were independent of p53 and pRb, but they were dependent on ATM. CDC25A that accumulated during mitosis was rapidly destroyed after DNA damage in an ATM-dependent manner. Ectopic expression of CDC25A or nonphosphorylatable CDC2 effectively inhibited the dephosphorylation of histone H3 after DNA damage. Hence, although spindle disruption and DNA damage provide conflicting signals to regulate CDC2, the negative regulation by the DNA damage checkpoint could overcome the positive regulation by the spindle-assembly checkpoint.  相似文献   

16.
Turning off the G2 DNA damage checkpoint   总被引:1,自引:0,他引:1  
  相似文献   

17.
The DNA damage checkpoint prevents the onset of DNA replication and mitosis when cells are exposed to genotoxic stress. However, it is not clear how cells react to DNA damage, in particular to DNA double strand breaks (DSBs) once they are in mitosis. Using Xenopus laevis egg extract as model system we have uncovered an ATM and ATR dependent checkpoint that targets centrosome dependent spindle assembly in the presence of chromosome breaks. This pathway relies on the phosphorylation by ATM and ATR of a novel centrosomal protein CEP63. We showed that CEP63 is required for proper spindle assembly in Xenopus and chicken DT40 cells. Phosphorylation of CEP63 by ATM and ATR leads to its delocalization from centrosomes and impairs its ability to promote centrosome dependent spindle assembly. These findings further support links uncovered in other model systems between the DNA damage checkpoint and centrosome in maintaining genome stability.  相似文献   

18.
The G(2) DNA damage checkpoint is activated by genotoxic agents and is particularly important for cancer therapies. Overriding the checkpoint can trigger precocious entry into mitosis, causing cells to undergo mitotic catastrophe. But some checkpoint-abrogated cells can remain viable and progress into G(1) phase, which may contribute to further genome instability. Our previous studies reveal that the effectiveness of the spindle assembly checkpoint and the duration of mitosis are pivotal determinants of mitotic catastrophe after checkpoint abrogation. In this study, we tested the hypothesis whether mitotic catastrophe could be enhanced by combining genotoxic stress, checkpoint abrogation, and the inhibition of the mitotic kinesin protein Eg5. We found that mitotic catastrophe induced by ionizing radiation and a CHK1 inhibitor (UCN-01) was exacerbated after Eg5 was inhibited with either siRNAs or monastrol. The combination of DNA damage, UCN-01, and monastrol sensitized cancer cells that were normally resistant to checkpoint abrogation. Importantly, a relatively low concentration of monastrol, alone not sufficient in causing mitotic arrest, was already effective in promoting mitotic catastrophe. These experiments suggest that it is possible to use sublethal concentrations of Eg5 inhibitors in combination with G(2) DNA damage checkpoint abrogation as an effective therapeutic approach.  相似文献   

19.
In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G(2) phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G(2) phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G(2) phase.  相似文献   

20.
Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号