首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary During an earlier investigation, microtubules were observed at the periphery of invasion processes in the developing syncytial tapetum ofTradescantia virginiana L. They were also associated with membranous sacs that accumulate adjacent to tetrads, with putative fusion sites where the tapetal plasmodium is initiated, and, in postmeiotic stages, with the perispore membrane that encloses the developing spore cells. Colchicine was administered to developing flower buds to investigate the roles of these microtubules. The results indicate that microtubules neither initiate nor guide the tapetal invasion of the loculus. The treatments, however, resulted in absence of cell coat from invasion processes and prevention of cell fusion. They also inhibited polarized migration of membrane sacs and removed the associated microtubules. The development of an organized secretory apparatus at the perispore membrane was disrupted, with subsequent disordered deposition of sporopollenin in the extracellular spaces of the partially-fused plasmodium. The results suggest that microtubules participate in the formation and internal spatial organization of the tapetal plasmodium, and establishment of a secretory surface that normally produces sporopollenin at the tapetum-microspore interface.  相似文献   

2.
Summary The anther ofCanna indica L. ×C. sp. hybrid contains a hitherto uncharacterized non-syncytial, invasive category of tapetum. With the onset of prophase I the tapetal walls are dissolved and the released protoplasts migrate into the loculus, where they stay discrete. Concomitant with the dissolution of walls the tapetal protoplasts develop a 17 nm thick extracellular granulo-fibrillar cell coat. This feature develops in the synchronous phase of tapetal development. The cell coat reacts positively with ruthenium red, potassium ferrocyanide, ConA-FITC and in the Thiéry reaction. Immunofluorescence microscopy using anti-tubulin revealed that even after the migration of tapetal cells into the loculus, the microtubules retain a predominant orientation in the cell cortex, probably derived from that in the original tapetal walled cells. This order is lost during late post-meiotic stages when the cells distort and can produce amoeboid processes. The microtubule orientation is correlated with that of the cell coat fibrils. Tapetal cells vary in ultrastructure and the density of cell coat fibrils after their migration into the loculus, but the cell coat persists until the cells degenerate. It is surmised that development of the cell coat relates to the lack of cell fusion and that the cortical microtubules help to sustain cell form. During post-meiotic stages the free tapetal cells develop massive peripheral arrays of interconnected ER cisternae, probably as part of a secretory apparatus which matures when the spores are producing their ornamented walls. Buds grown in colchicine solution showed accumulation of sporopolleninlike granules in all extracellular spaces of the anther cavity.  相似文献   

3.
Summary Establishment of a tapetal plasmodium in postmeiotic stages in anther locules ofTradescantia virginiana encloses the tetrads in membrane-limited compartments. The perispore membrane (PSM), around each tetrad, is derived from composite tapetal cell plasma membranes. The tapetum acquires an abundance of ER and ribosomes and by the late tetrad stage the PSM and its underlying cytoplasm exhibit specialized features, studied here by ZnIO impregnation, osmium maceration, application of indirect immunofluorescence employing antitubulin, conventional thin sectioning and the Thiéry reaction. These features include: labyrinthine convolutions of the PSM resulting from migration of membranous sacs and their partial fusion to the PSM, an intimate relationship of tubular ER with the convoluted PSM, and microtubules underlying the PSM and among the membranous sacs. At the same time membrane-bound granules, comparable to but smaller and simpler than tapetal orbicules of secretory tapeta, form in the convolutions. It is postulated that the ER supplies precursors of sporopollenincontaining parts of the spore wall, that the PSM-associated microtubules stabilise the whole secretory apparatus at the tapetum-spore interface, and that the precursors are expelled into the lumen bounded by the PSM and then accreted upon the orbicule-like granules or the developing spore wall. With dissolution of the callosic wall, the plasmodium invades the intermicrosporal spaces of late tetrads, the PSM unfolding its elaborations and becoming closely appressed to the exinous surfaces of individual spores. Microtubules, although present during this phase of invasion, do not seem to propel the invasion processes and may have roles in shape maintenance. During pollen mitosis and enlargement the tapetal cytoplasm accumulates lipidic globules. A late phase of Golgi activity precedes accumulation of vesicles or vacuoles near the spores, these being bounded by single or multiple tripartite membranes. With anther desiccation, portions of plasmodium are deposited on the pollen surface in the form of tryphine, the deposits containing stacked membrane-like bilayers.  相似文献   

4.
Uchida W  Matsunaga S  Sugiyama R  Kazama Y  Kawano S 《Planta》2003,218(2):240-248
When inoculated with the dimorphic smut fungus Microbotryum violaceum (Pers.) G. Deml and Oberwinkler, the female flower of the dioecious plant Silene latifolia (Miller) E.H.L. Krause develops anther-like structures filled with spores instead of pollen grains. Using natural scanning electron microscopy, Nomarski interference microscopy, and fluorescence microscopy, we investigated the morphological modifications of the host plant resulting from this parasitism and the localization of smut hyphae in the flower bud. Flowers of infected plants lasted significantly longer than those of healthy plants, probably because the infection strengthened floral organs, such as the flower base and the anther filaments. Smut hyphae were observed throughout all organs of the young flower buds of infected plants, including sepals, petals, stamens, and pistil primordia. In healthy female flowers, anthers initiated sporogenous cell formation, but lacked parietal cell layers. By contrast, the parietal cell layers of infected female flowers differentiated into tapetal tissue, middle cell layers, and endothecial layers, as in the anthers of healthy male flowers. Smut spore formation in the infected anther was initiated in intercellular regions between the sporogenous cells, resulting in degeneration of premature sporogenous cells, tapetal tissue, and middle cell layers. The development of the endothecial layers and epidermis in the infected anther were morphologically normal.Abbreviations DAPI 4,6-diamidino-2-phenylidole - i infected - PMC pollen mother cell  相似文献   

5.
A combination tapetum consisting of a cellular, parietal component and a plasmodial component occurs inSchizaea pectinata. A single, tapetal initial layer divides to form an outer parietal layer which maintains its cellular integrity until late in spore wall development. The inner tapetal layer differentiates into a plasmodium which disappears after the outer exospore has developed. In the final stages of spore wall development, granular material occurs in large masses and is dispersed as small granules throughout the sporangial loculus. No tapetal membrane develops. Comparisons are drawn with the combination tapetum found inPsilotum nudum.  相似文献   

6.
Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.  相似文献   

7.
Development of the Tapetum in Pinus banksiana Preceding Sporogenesis   总被引:1,自引:0,他引:1  
Early in sporangial ontogeny, the cells destined to become thesporogenous and tapetal tissue differentiate in a strikinglysimilar manner. The first conspicuous step in development isa contraction of the protoplasts, beginning at the centre ofthe microsporangium and moving radially to its periphery. Similardevelopment of the two groups of cells ceases as the callosewall is formed around the meiocytes. At this point the originalwalls investing the tapetal cells become gelatinous, and lipidsynthesis commences within the contracted protoplasts. The bulkof this lipid is secreted from the cells, and becomes lodgedin the loculus, either as globules in the expanded radial andinner cell walls, or as a continuous layer on the inside ofthe middle lamella separating the loculus from the wall of themicrosporangium. This lipoidal layer forms the basement of aperitapetal membrane, believed to serve as a container for thefluid in which the young sporogenous cells are immersed. Examination of protein levels and ribosome numbers in the tapetalcells reveals that protein synthesis proceeds at an increasingrate throughout the development preceding meiosis, but apparentlyceases as the pollen mother cells become enveloped in callose.  相似文献   

8.
Summary The distribution of membrane calcium and calmodulin (CaM) has been fluorimetrically determined in the anther of Gasteria verrucosa with particular attention to sporogenous cells, meiocytes, microspores, pollen and stages of pollen germination and tube growth using chlortetracycline (CTC) and fluphenazine (FPZ). CTC and FPZ fluorescence in sporogenous cells is relatively higher than in the adjacent tapetal cells, indicating higher membrane calcium and CaM levels in the former cell type. However, during meiosis there is a significant increase in membrane calcium and CaM levels in the meiocytes compared to that found in the young microspores. CTC and FPZ fluorescence in the sporogenous cells, meiocytes and young microspores is punctate and slightly diffused throughout the cytoplasm. In the microspores of the tetrad and the young released microspores CTC fluorescence (CTCf) is polarized and mainly associated with the area opposite the future colporal region. FPZ fluorescence (FPZf) becomes polarized in the young microspore. Subsequently, there is a shift in the polarity, and most of the CTCf and FPZf in the old microspores and pollen is regionalized towards the colporal region, and the fluorescence is more diffused, indicating a change in the organellar-bound calcium and CaM. This final graded distribution of CTCf is maintained during pollen germination in that the growing pollen tubes invariably show a tip to base membrane-calcium gradient. In the tapetal cells a high level of Ca2+ is present during the microspore stage. During the preparation for anthesis the endothecium differentiation is marked by the presence of Ca2+. Post-treatment of labelled cells with a Ca2+ chelator such as EGTA resulted in a substantial decrease in diffuse and punctate CTCf. Alternatively, treatment of cells with non-ionic detergent Nonidet P-40 resulted in the total elimination of CTCf, suggesting that the observed CTC fluorescence was due to membrane-associated calcium. The cytological specification of CTC as a probe for calcium is discussed. From cytofluorometric measurements and atomic absorption, it became clear that the level of Ca2+ in the anther is high during the sporogenous and meiotic phases. An increase in CTCf and FPZf occurred after microspore mitosis. An interaction of Ca2+ transport from tapetum to the young pollen is postulated. These findings suggest that the level of Ca2+ in the anther during meiosis is generally relatively higher than at the sporogenous or young microspore stage. These findings are discussed in the light of available information on the role of Ca2+ and CaM-mediated processes such as cell division, callose synthesis and pollen-tube tip growth.  相似文献   

9.
Structural changes during cell wall formation by populations of semisynchronously germinating zoospores were studied in the water mold Allomyces macrogynus. Fluorescence microscopy using Calcofluor white ST (which binds to -1,4-linked glycans) demonstrated that Calcofluor-specific material was deposited around most cells between 2–10 min after the induction of encystment (beginning when a wall-less zoospore retracts its flagellum and rounds up). During the first 15 min of encystment there was a progressive increase in fluorescence intensity. Ultrastructural analysis of encysting cells showed that within 2–10 min after the induction of encystment small vesicles 35–70 nm diameter were present near the spore surface, and some were in the process of fusing with the plasma membrane. The fusion of vesicles with the zoospore membrane was concomitant with the appearance of electron-opaque fibrillar material outside the plasma membrane. Vesicles similar to those near the spore surface were found within the gamma () particles of encysting cells. These particles had a crystalline inclusion within the electron-opaque matrix. During the period of initial cyst cell wall formation numerous vesicles appeared to arise at the crystal-matrix interface. Approximately 15–20 min was required for the cell wall to be formed. We suggest that the initial response of the zoospore to induction of encystment is the formation of a cell wall mediated by the fusion of cytoplasmic vesicles with the plasma membrane.Non-Standard Abbreviations GlcNac N-Acetylglucosamine - DS sterile dilute salts solution - PYG peptone-yeast extract-glucose broth  相似文献   

10.
The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene -glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and -amylase inhibitors.  相似文献   

11.
以不同发育时期的凤仙花花药为实验材料,采用组织化学方法,对花药发育中的结构变化及多糖和脂滴物质分布进行观察。结果表明:(1)凤仙花的花药壁由6层细胞组成,包括1层表皮细胞,2层药室内壁细胞,2层中层细胞和1层绒毡层细胞。其中绒毡层细胞的形态不明显,很难与造孢细胞区分,且在小孢子母细胞时期退化。(2)在小孢子母细胞中出现了一些淀粉粒,但减数分裂后,早期小孢子中的淀粉粒消失,又出现了一些小的脂滴;随着花粉的发育,小孢子形成大液泡,晚期小孢子中的脂滴也消失;小孢子分裂形成二胞花粉后,营养细胞中的大液泡降解、消失,二胞花粉中又开始积累淀粉;接近开花时,成熟花粉中充满细胞质,其中包含了较多的淀粉粒和脂滴。(3)在凤仙花的花药发育中,绒毡层细胞很早退化,为小孢子母细胞和四分体小孢子提供了营养物质;其后的中层细胞退化则为后期花粉发育提供了营养物质。  相似文献   

12.
As meiosis is completed, and following the synthesis of lipidduring meiotic prophase, the tapetum begins to form precursorsof sporopollenin. These accumulate in cisternae of the endoplasmicreticulum, resembling large dictyosome vesicles. They are releasedfrom the tapetal protoplasts intact, but rupture in the loculus.The liberated precursors polymerize either on lipid dropletsin the expanded tapetal walls, forming the orbicules, or onthe lipid layer surrounding the loculus, forming the secondcomponent of the peritapetal membrane. On rupture of the callosewall condensation also proceeds on the walls of the meiospores,already coated with a thin layer of sporopollenin synthesizedby the spore itself. The tapetal protoplasts expand considerablyduring synthesis of the precursors. Wide channels also formbetween the protoplasts, and the nuclei undergo irregular divisions. Ribosomes are conspicuous in the tapetal cytoplasm during thesporopollenin synthesis, but protein levels are low. It is proposedthat protein is exported to the loculus and untimately incorporatedinto the developing microspores. In the final phase of microsporogenesis the tapetum fragments,and parts move into the loculus.Protein levels in the tapetumare now high, possible indicating the massive synthesis of hydrolaseswhich accomplish the dissolution of the tissue. Removal of thelipid component of the peritapetal membrane precedes the desiccationof the anther. The surfaces of the mature pollen lack organizedor irregular deposits of tapetal debris.  相似文献   

13.
Stages in the formation and degradation of pollenkitt in the anther of Lilium have been investigated using the electron microscope. This material, which appears to be a complex of lipid and carotenoids, is formed during the autolysis of the tapetal cells by the fusion of lipidic inclusions with globules derived from plastids. Autolysis of the tapetal cells is progressive for it commences with the disintegration of many cytoplasmic components, followed by the breakdown of storage lipids. The plasma membrane maintains its integrity during these events apparently, by proliferation, aiding in the transfer of the products of hydrolysis into the loculus. During the course of lipid breakdown, a striking vacuolar system is formed in the tapetal cytoplasm, presumably containing the products of this hydrolysis. The source of membranes for this system is clearly the lipid globules themselves. The generation of the membrane apparently involves the participation of electronopaque material, possibly enzymic, contained within the lipid globules.  相似文献   

14.
It appears that the tapetum is universally present in land plants, even though it is sometimes difficult to recognize, because it serves mostly as a tissue for meiocyte/spore nutrition. In addition to this main function, the tapetum has other functions, namely the production of the locular fluid, the production and release of callase, the conveying of P.A.S. positive material towards the loculus, the formation of exine precursors, viscin threads and orbicules (= Ubisch bodies), the production of sporophytic proteins and enzymes, and of pollenkitt/tryphine. Not all these functions are present in all land plants:Embryophyta. Two main tapetal types are usually distinguished in theSpermatophyta: the secretory or parietal type and the amoeboid or periplasmodial type; in lower groups, however, other types may be recognized, with greater or lesser differences. A hypothetical phylogenesis of the tapetum is proposed on the basis of its morphological appearance and of the nutritional relations with meiocytes/spores. The evolutionary trends of the tapeta tend towards a more and more intimate and increasingly greater contact with the spores/pollen grains. Three evolutionary trends can be recognized: 1) an intrusion of the tapetal cells between the spores, 2) a loss of tapetal cell walls, and 3) increasing nutrition through direct contact in narrow anthers.  相似文献   

15.
Lynn L. Hoefert 《Protoplasma》1971,73(3-4):397-406
Summary Tapetal cell development and degeneration in anthers ofBeta vulgaris L. were studied with the electron microscope. Tapetal cells become differentiated from sporogenous cells early in anther ontogeny. The tapetal nuclei divide mitotically; binucleate tapetal cells contain relatively little endoplasmic reticulum and otherwise resemble meristematic cells of higher plants. There follows an increase in endoplasmic reticulum and by the time the sporogenous tissue has entered meiotic prophase, the tapetal cells have differentiated the usual characteristics of secretory cells. Degenerative changes begin to appear in tapetal cells after meiosis of the sporogenous tissue. Such changes include loss of inner tangential and anticlinal walls, degeneration of tapetal nuclear envelopes, disruption of the plasmalemma, and changes in the cytoplasmic organelles. Coated tubules are associated with tapetal nucleoli during degenerative stages and the tubules persist after tapetal nuclei have degenerated. Tapetal cell cytoplasm disappears completely by the stage of microspore mitosis.  相似文献   

16.

Key message

Cellulose-specific staining revealed that tapetal cells and microsporocytes lose cellulosic walls before the onset of meiosis. Cellulosic wall degradation in microsporocytes might be independent of tapetal cells (or TPD1).

Abstract

Some cell types in a variety of angiosperms have been reported to lack cell walls. Here, we report that the tapetal cells of the anther of Arabidopsis thaliana did not appear to have a cellulosic wall based on staining with Calcofluor and Renaissance 2200. During sporogenous cell formation, cellulosic wall was present in all anther tissues. However, before meiosis it was almost absent on the tapetal cells and on the microsporocytes. In a sporocyteless/nozzle (spl/nzz) mutant, which lacks several components (microsporocytes, tapetum, middle layer and endothecium), cellulosic wall was detected in all anther cells. In another mutant, tapetum determinant1 (tpd1), which lacks tapetum and has more microsporocytes, cellulosic wall was almost absent on the microsporocytes before meiosis, similar to the wild type. These results suggest that the tapetum cells and microsporocytes lose cellulosic walls during microsporocyte formation, and that cell wall degradation occurs downstream of SPL/NZZ and is independent of TPD1.  相似文献   

17.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

18.
Summary Cytokinesis in Impatiens sultani microspore mother cells is simultaneous. It starts with the formation of small ingrowths of the surrounding callosic wall. Next, an incomplete cell plate is formed by fusion of small dictyosome vesicles. The cell plate consists of a network of anastomosing tubules and sacs. Aggregates of fusing vesicles are associated with bundles of microtubules, which are oriented perpendicular to the plane of the future cell walls. In the sacculate parts of the cell plate, some callose is deposited, while the associated microtubules disappear. The cell walls ultimately develop by enlargement of the previously formed wall ingrowths, which successively incorporate the elements of the cell plate. The enlargement and thickening of the walls is not accompanied by a further fusion and incorporation of dictyosome vesicles.  相似文献   

19.
The tapetal development ofCichorium intybus L. is investigated using LM and TEM and discussed in relation to the development in other species. During the second meiotic division the tapetal cells become binucleate and lose their cell walls. They intrude the loculus at the time of microspore release from the meiotic callose walls, which means that a locular cavity is never present in this species. During pollen development they tightly junct the exine, especially near the tips of the spines. During the two-celled pollen grain stage they degenerate and most of their content turns into pollenkitt. Until anther dehiscence they keep their individuality, which means that these intruding tapetal cells never fuse to form a periplasmodium. The ultrastructural cytoplasmatic changes during this development are discussed in relation to possible functions.  相似文献   

20.
Summary The effect of low temperature (2 °C) on cell shape and microtubules in zoospores of the green algaChlorosarcinopsis gelatinosa has been investigated. The zoospores are 4–6 times longer than wide with a mean length of 12,5 m and can be kept in the dark for several hours without changes in cell shape. Cell shape changes have been evaluated quantitatively by measuring changes in cell length. Low temperature induces a decrease in cell length which exhibits a two-step kinetic: during the first 30 minutes a rapid rate of decrease in cell length was measured, while during the next 4 hours a slow rate of decrease in cell length was observed. Complete regeneration of zoospore length occurs when cold-treated cells are subjected to the original zoospore induction temperature (30 °C) for two hours. Observation of numbers, disposition and types of microtubules in the zoospore during decrease in cell length has shown that within 30 minutes after cold application the secondary cytoskeletal microtubules (scmt) disappear, while flagellar root microtubules are unaffected. During this period most cells develop a prominent posterior appendage (tail). Sections demonstrate the presence of several microtubules in these tails. Flagellar root microtubules probably extend into the tails and disappearance of scmt starts at the posterior pole of the cell. Regeneration of zoospores to original cell length is coupled with reappearance of scmt starting at the anterior pole of the cell. It is concluded that secondary cytoskeletal microtubules constitute the main cytoskeleton inChlorosarcinopsis zoospores and that flagellar root microtubules contribute to only a minor extent to the cytoskeleton, because they cannot retain the cell shape. The results are discussed with respect to the functional significance of flagellar root microtubules in green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号