首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In cell extracts of Methanosarcina barkeri, the methylcoenzyme M methylreductase system with H2 as the electron donor was inhibited by NAD+ and NADP+, but NADH and NADPH had no effect on enzyme activity. NAD+ (4 and 8 mM) shifted the saturation curve for methylcoenzyme M from hyperbolic (Hill coefficient [nH] = 1.0; concentration of substrate giving half maximal velocity [Km] = 0.21 mM) to sigmoidal (nH = 1.5 and 2.0), increased Km (Km = 0.25 and 0.34 mM), and slightly decreased Vmax. Similarly NADP+ at 4m and 8 mM increased nH to 1.6 and 1.85 respectively, but the Km values (0.3 and 0.56 mM) indicated that NADP+ was a more efficient inhibitor than NAD+.  相似文献   

3.
A practical fed-batch culture, in which consumed amounts of methanol and other nutrients were supplied in response to a direct signal of the gas production of CH4 and CO2, was carried out for the cell production of methanol-utilizing Methanosarcina barkeri. In this fed-batch culture system equipped with level sensors to detect the gas production, a high cell concentration of 24.4 g/l was attained in 175-h cultivation maintaining the optimized nutrient concentrations of methanol, NH4+, PO43−, Na+, Mg2+, Ca2+, Fe2+, Ni2+, Co2+ and cysteine (S source) throughout the culture.  相似文献   

4.
Methanol:coenzyme M methyltransferase is an enzyme complex composed of three subunits, MtaA, MtaB, and MtaC, found in methanogenic archaea and is needed for their growth on methanol ultimately producing methane. MtaABC catalyzes the energetically favorable methyl transfer from methanol to coenzyme M to form methyl coenzyme M. Here we demonstrate that this important reaction for possible production of methanol from the anaerobic oxidation of methane can be reversed in vitro. To this effect, we have expressed and purified the Methanosarcina barkeri MtaABC enzyme, and developed an in vitro functional assay that demonstrates MtaABC can catalyze the energetically unfavorable (ΔG° = 27 kJ/mol) reverse reaction starting from methyl coenzyme M and generating methanol as a product. Demonstration of an in vitro ability of MtaABC to produce methanol may ultimately enable the anaerobic oxidation of methane to produce methanol and from methanol alternative fuel or fuel‐precursor molecules. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1243–1249, 2017  相似文献   

5.
Summary Production of vitamin B-12 compounds from methanol was carried out by Methanosarcina barkeri Fusaro, an anaerobic methanogen. The methanogen released about 40% to 70% of corrinoids irrespective of the culture medium used. The use of cysteine instead of Na2S as the sole sulphur source for cell growth led to an increase in the cobalt chloride concentration in the culture medium up to 16 times the normal (0.6 mg·l-1) without medium precipitation. This in turn resulted in an intracellular vitamin B-12 content of 5.6 mg·g dry cell-1, the rest being discharged into the culture supernatant; this was 87 mg·l-1, 73% of the total corrinoids after 20 repeated intermittently fed cultures and the final cell concentration was 5.8 g dry cell·l-1. Taking advantage of this, continuous production of extracellular vitamin B-12 compounds was attempted with a fixed-bed bioreactor (carrier: diatomaceous clay). At a steady state operation at space velocity of 9 to 11 day-1, the concentration of the discharged corrinoid was 6.8 to 7.9 mg·l-1, having a vitamin B-12 activity of about 4 mg·l-1. Total cell mass retained in the reactor was 39.6 g dry cell l-reactor-1. Identification of the corrinoids revealed that 19% of the total corrinoids was comprised of the vitamin B-12 Factor III (5-hydroxybenzimidazolyl cobamide) and the remainder were mainly the base-free vitamin B-12 Factor B (cobinamide and its derivatives).  相似文献   

6.
The effects of methanol addition and consumption on chloroform degradation rate and product distribution in methanogenic methanol enrichment cultures and in cultures of Methanosarcina barkeri 227 were investigated. Degradation of chloroform with initial concentrations up to 27.3 microM in enrichment cultures and 4.8 microM in pure cultures was stimulated by the addition of methanol. However, methanol consumption was inhibited by as little as 2.5 microM chloroform in enrichment cultures and 0.8 microM chloroform in pure cultures, suggesting that the presence of methanol, not its exact concentration or consumption rate, was the most significant variable affecting chloroform degradation rate. Methanol addition also significantly increased the number of moles of dichloromethane produced per mole of chloroform consumed. In enrichment cultures, the number of moles of dichloromethane produced per mole of chloroform consumed ranged from 0.7 (methanol consumption essentially uninhibited) to 0.35 (methanol consumption significantly inhibited) to less than 0.2 (methanol not added to the culture). In pure cultures, the number of moles of dichloromethane produced per mole of chloroform consumed was 0.47 when methanol was added and 0.24 when no methanol was added. Studies with [14C]chloroform in both enrichment and pure cultures confirmed that methanol metabolism stimulated dichloromethane production compared with CO2 production. The results indicate that while the addition of methanol significantly stimulated chloroform degradation in both methanogenic methanol enrichment cultures and cultures of M. barkeri 227, the prospects for use of methanol as a growth substrate for anaerobic chloroform-degrading systems may be limited unless the increased production of undesirable chloroform degradation products and the inhibition of methanol consumption can be mitigated.  相似文献   

7.
8.
Methanol: 5-hydroxybenzimidazolylcobamide methyltransferase (MT1) from Methanosarcina barkeri, which is one of the enzymes responsible for the transmethylation from methanol to coenzyme M, was found to be activated in the presence of hydrogenase and ferredoxin. This activation was shown to involve a reduction of the bound corrinoid to the Co (I) level, and was demonstrated by spectrophotometry and chemical conversion of reduced MT1 to its methylated form. The reducing system of hydrogenase and ferredoxin was able to reduce dithiols, like dithiodiethanesulfonate and cystine to their monomers, in the presence of a corrinoid, which acts as an electron carrier. The ferredoxin was purified 133-fold and was tentatively identified on the basis of spectral properties and iron content of 3.8-4.0 atoms iron per molecule ferredoxin (12,000 daltons).  相似文献   

9.
The effect of Eh on the methanogenesis of methanol by Methanosarcina barkeri strain Fusaro was studied in pH-controlled anaerobic batch cultures at 37°C, in which the Eh of the culture medium was controlled by the addition of Ti(III)-citrate at values ranging from −340 to −520 mV. The changes in Eh revealed that the specific growth rate, μ, specific methane production rate, QCH4 and growth yield, YX/S were optimum under an Eh between −430 and −520 mV, while they decreased at the higher Eh of −340 mV. The maximum values of QCH4 and μ under the optimum Eh condition were 210 ml CH4/g dry cell weight·h−1 and 0.11 h−1, respectively.  相似文献   

10.
Methanol:coenzyme M methyltransferase from methanogenic archaea is a cobalamin-dependent enzyme composed of three different subunits: MtaA, MtaB and MtaC. MtaA is a zinc protein that catalyzes the methylation of coenzyme M (HS-CoM) with methylcob(III)alamin. We report zinc XAFS (X-ray absorption fine structure) results indicating that, in the absence of coenzyme M, zinc is probably coordinated by a single sulfur ligand and three oxygen or nitrogen ligands. In the presence of coenzyme M, one (N/O)-ligand was replaced by sulfur, most likely due to ligation of the thiol group of coenzyme M. Mutations in His237 or Cys239, which are proposed to be involved in ligating zinc, resulted in an over 90% loss in enzyme activity and in distinct changes in the zinc ligands. In the His237-->Ala and Cys239-->Ala mutants, coenzyme M also seemed to bind efficiently by ligation to zinc indicating that some aspects of the zinc ligand environment are surprisingly uncritical for coenzyme M binding.  相似文献   

11.
12.
Abstract A mass spectrometer with membrane inlet was used to study methanol metabolism by Methanosarcina barkeri strain MS. The addition of methanol to methanol grown culture samples in the mass spectrometer vessel stimulated methanogenesis and hydrogen production. The apparent K s for methanol was determined as 0.5 mM and the V max as 8.14 mmol g (dry weight) h−1. The V max for methane production was fairly constant during growth of the culture on methanol implying that growth is tightly coupled to methanogenesis. The addition of methanol to culture samples in the mass spectrometer vessel stimulated methanogenesis with no lag which indicated that methanogenesis can be uncoupled from growth. Exposure of the culture sample in the mass spectrometer vessel to an atmosphere of 2 kPa oxygen for 80 min resulted in a decrease in the rate of methanogenesis from methanol but on returning the atmosphere to nitrogen the addition of further methanol stimulated methanogenesis. The effect of other inhibitors of methanogenesis (2-bromoethane sulphonate and monensin); K j values 21.5 μM and 0.3 mM, respectively) were also studied.  相似文献   

13.
A trimethylamine:2-mercaptoethanesulfonate (HS-coenzyme M) methyltransferase has been shown to be present in trimethylamine-grown cells but not in methanol-grown cells of Methanosarcina barkeri. The transfer of one methyl group was catalyzed by this enzyme so that dimethylamine and methyl-S-coenzyme M were the products. Enzyme activity required the presence of ATP and preincubation of the protein solution under H2. Fifty percent of the maximum activity was obtained under N2 in the presence of NAD(P)H plus dithioerythritol.Abbreviations HS-coenzyme M 2-mercaptoethanesulfonic acid - methyl-S-coenzyme M 2-(methylthio)ethanesulfonic acid - TES N-tris (hydroxymethyl)-methyl-2-aminoethanesulfonic acid - DTE 1,4-dithioerythritol - BrES 2-bromoethanesulfonic acid - DTT 1,4-dithiothreotol  相似文献   

14.
Methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri has been purified to approximately 90% homogeneity by ion-exchange chromatography on DEAE-cellulose and QAE-A50 Sephadex columns. The molecular weight, estimated by gel electrophoresis, was found to be 122,000, and the enzyme contained two different subunits with molecular weights of 34,000 and 53,000, which indicates an alpha 2 beta structure. The enzyme contains three or four molecules of 5-hydroxybenzimidazolylcobamide, which could be removed by treatment of the enzyme with 2-mercaptoethanol or sodium dodecyl sulfate. In both cases the enzyme dissociated into its subunits. For stability, the enzyme required the presence of divalent cations such as Mg2+, Mn2+, Sr2+, Ca2+, or Ba2+. ATP, GTP, or CTP was needed in a reductive activation process of the enzyme. This activation was brought about by a mixture of H2, ferredoxin, and hydrogenase, but also by CO, which is thought to reduce the corrinoid chemically. The CO dehydrogenase-like activity of the methyltransferase is discussed.  相似文献   

15.
Abstract The metabolism of methanol and pyruvate by cells of Methanosarcina barkeri was probed in vivo by NMR taking advantage of the non-invasive characteristics of this technique. Upon administration of substrates, the kinetics of substrate consumption, the product formation and the energetic state of the cells was monitored using carbon-13, phosphorus-31 or proton NMR. The effects of several inhibitors and uncouplers were investigated. Cells supplied with pyruvate developed considerable levels of nucleotide triphosphate; methane production was monitored, as well as CO2 and H2 formation. Most of the pyruvate was utilized for the synthesis of valine or intermediates of the valine pathway. The origin of the carbon atom in methane was elucidated using 13C-labelled pyruvate.  相似文献   

16.
Extracts of Methanosarcina barkeri reduced methanol and CO2 to CH4 in the presence of H2 and converted methanol stoichiometrically into CH4 and CO2 in the absence of H2. In dialyzed cell-free extracts these reactions were stimulated by 2-mercaptoethanesulfonic acid (coenzyme M) and some derivatives (acetyl and formylcoenzyme M and the oxidized form of coenzyme M), which could be converted to coenzyme M by enzyme systems present in the extracts. Methylcoenzyme M could not be used in these systems.  相似文献   

17.
Fixation of molecular nitrogen by Methanosarcina barkeri   总被引:1,自引:0,他引:1  
Abstract Methanosarcina barkeri cells were observed in ammonia-free anaerobic acetate enrichments for sulfate-reducing bacteria. The capacity of Methanosarcina to grow diazotrophically was proved with a pure culture in mineral media with methanol. The cell yields with N2 or NH4+ ions as nitrogen source were 2.2 g and 6.1 g dry weight, respectively, per mol of methanol. Growth experiments with 15N2 revealed that 84% of the cell nitrogen was derived from N2. Acetylene was highly toxic to Methanosarcina and only reduced at concentrations lower than 100 μmol dissolved per 1 of medium. Assimilation of N2 and reduction of acetylene were inhibited by NH4+ ions. The experiments show that N2 fixation occurs not only in eubacteria but also in archaebacteria. The ecological significance of diazotrophic growth of Methanosarcina is discussed.  相似文献   

18.
Methanosarcina barkeri grows in defined media with acetate, methanol or carbon dioxide as carbon sources. Methanol is used for methanogenesis at a 5 times higher rate as compared with the other substrates. M. barkeri can use the substrates simultaneously, but due to acidification or alkalification of the medium during growth on methanol or acetate, respectively, growth and methanogenesis may stop before the substrates are exhausted. Growth and methanogenesis on methanol or acetate are inhibited by the presence of an excess of H2; the inhibition is abolished by the addition of carbon dioxide, which probably serves as an essential source of cell carbon, in the absence of which methano-genesis ceases.  相似文献   

19.
Methanosarcina barkeri was recently shown to contain two cytoplasmic isoenzymes of methylcobalamin: coenzyme M methyltransferase (methyltransferase 2). Isoenzyme I predominated in methanol-grown cells and isoenzyme II in acetate-grown cells. It was therefore suggested that isoenzyme I functions in methanogenesis from methanol and isoenzyme II in methanogenesis from acetate. We report here that cells of M. barkeri grown on trimethylamine, H2/CO2, or acetate contain mainly isoenzyme II. These cells were found to have in common that they can catalyze the formation of methane from trimethylamine and H2, whereas only acetate-grown cells can mediate the formation of methane from acetate. Methanol-grown cells, which contained only low concentrations of isoenzyme II, were unable to mediate the formation of methane from both trimethylamine and acetate. These and other results suggest that isoenzyme II (i) is employed for methane formation from trimethylamine rather than from acetate, (ii) is constitutively expressed rather than trimethylamine-induced, and (iii) is repressed by methanol. The constitutive expression of isoenzyme II in acetate-grown M. barkeri can explain its presence in these cells. The N-terminal amino acid sequences of isoenzyme I and isoenzyme II were analyzed and found to be only 55% similar.Abbreviations H-S-CoM coenzyme M or 2-mercaptoethane-sulfonate - CH3-S-CoM methyl-coenzyme M or 2(methylthio)-ethanesulfonate - [Co] cobalamin - CH3-[Co] methylcobalamin - H4MPT tetrahydromethanopterin - CH3-H4MPT N 5-methyltetrahydromethanopterin - MT1 methyltransferase 1 or methanol: 5-hydroxybenzimidazolyl cobamide methyltransferase - MT2 methyltransferase 2 or methylcobalamin: coenzyme M methyltransferase - Mops morpholinopropanesulfonate - 1 U = 1 mol/min  相似文献   

20.
Methanosarcina barkeri strain 227 maintained on an acetate medium for 2 years was found to possess hydrogenase, methylcoenzyme M methylreductase, coenzyme F420, and coenzyme M. The levels of these constituents in acetate-grown cells were similar to those found in cells of the same strain grown on methanol or hydrogen and carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号