首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bile alcohols in bile, urine, and feces of a patient with cerebrotendinous xanthomatosis have been analyzed by a combination of capillary gas-liquid chromatography and mass spectrometry after fractionation into groups according to mode of conjugation. The presence of at least 18 bile alcohols, which were excreted mainly as glucurono-conjugates in bile and urine, and as unconjugated forms in feces, was demonstrated. The following bile alcohols were identified with certainty by direct comparison with reference compounds: 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol; (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol; 5 alpha- and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrols; 5 alpha- and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrols; 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol; (22R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22,25-pentol; (23R)- and (23S)-5 beta-cholestane-3 alpha,7 alpha, 12 alpha,23,25-pentols; 3 alpha,12 alpha,25-trihydroxy-5 beta-cholestane-7-one; (24R)- and (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentols; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol. Although the bile alcohol profile in urine was quite different from those in bile and feces, the determination of urinary bile alcohols as well as of biliary and fecal bile alcohols could be used for diagnosis of cerebrotendinous xanthomatosis.  相似文献   

2.
Biliary and urinary bile alcohol and bile acid composition has been determined by high performance liquid chromatography in patients with cerebrotendinous xanthomatosis before and after treatment with chenodeoxycholic acid. Most of the bile acids and bile alcohols in the bile and urine were separated in less than 30 min using a radial pack C18 muBondapak 5 micron particle size column with a mobile phase of acetonitrile-water-methanol-acetic acid 70:70:20:1 (v/v/v/v) at a flow rate of 2 ml/min, and a refractive index detector. Before treatment, cholic acid (49%) and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol (27%) were the major biliary bile acid and bile alcohol, respectively, but were not detected in the urine of five patients. 5 beta-Cholestane-pentols were, instead, the major urinary bile alcohols with 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 23 xi, 25-pentol (56%) predominating. Whereas 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24S,25-pentol was not detected in the bile, it was isolated in the urine of all patients (27%). The only urinary bile acid isolated by high performance liquid chromatography was nor-cholic acid. After 1 month of treatment with chenodeoxycholic acid, 0.75 g/day, chenodeoxycholic acid became the major bile acid in the bile of all patients (71%) along with its metabolite, ursodeoxycholic acid (21%). Cholic acid and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol were drastically reduced and were only 3% each. The excretion of 5 beta-cholestane-pentols in the urine was also drastically reduced from 130 mg/day to 15 mg/day.  相似文献   

3.
The urine and feces of a patient with the rare inherited lipid storage disease, sitosterolemia and xanthomatosis, were analyzed. Substantial quantities of C26-bile alcohol, 26 (or 27)-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24S,25 xi-pentol along with 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24R,25-pentol, and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol were found. The structure of the C26-bile alcohol was confirmed by direct comparison (gas-liquid chromatography-mass spectrometry and thin-layer chromatography) with a standard sample synthesized from cholic acid. The configurational assignment at C-24 was determined by lanthanide-induced circular dichroism Cotton effect measurements. The increased excretion of these C26- and C27-bile alcohols suggests an abnormality of bile acid biosynthesis in this disease.  相似文献   

4.
Absolute configuration at C-23 of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,23,25-pentol, one of the bile alcohols isolated from the patients with cerebrotendinous xanthomatosis, was unequivocally determined as 23S by conversion of a key intermediate, (23S)-5 beta-cholest-25-ene-3 alpha,7 alpha,12 alpha,23-tetrol to either the bile alcohol of known absolute configuration, (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol, or the naturally occurring 23,25-pentol.  相似文献   

5.
Bile alcohols in rat bile were analyzed by gas-liquid chromatography-mass spectrometry. Six bile alcohols were newly identified as minor constituents in addition to 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol, major bile alcohol of rat bile. The bile alcohols newly identified were 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol, 5 alpha-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol, 5 alpha-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol, and 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol. The biliary bile alcohols of the rat occurred mainly as the sulfuric acid esters and, in lesser amounts, as glucuronoconjugated and unconjugated forms. The amount of total bile alcohols was about 27.9 nmol in 1 ml of bile.  相似文献   

6.
Identification of bile alcohols in human bile   总被引:1,自引:0,他引:1  
Human gallbladder bile was examined for bile alcohols. Following isolation and hydrolysis, the bile alcohols were analyzed by capillary gas-liquid chromatography-mass spectrometry. The following bile alcohols were identified with certainty by direct comparison with reference standards: 5 beta-cholane-3 alpha,-7 alpha,23,24-tetrol; 5 beta-cholane-3 alpha,7 alpha,12 alpha,24-tetrol; 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol; 27-nor-5 beta-cholest-25-ene-3 alpha,7 alpha,-12 alpha,24-tetrol; 3 alpha,7 alpha,12 alpha-trihydroxy-27-nor-5 beta-cholestan-24-one; 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol; 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25,26-hexol; 5 beta-cholestane-3 alpha,7 alpha,24-triol; 5 beta-cholestane-3 alpha,7 alpha,25-triol; 5 beta-cholestane-3 alpha,7 alpha,26-triol; 5 alpha-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol; (24R)- and (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentols; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,-25,26-pentol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26,27-pentol; 26-methoxy-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol. There also existed two norcholestanetetrols and three cholestanetetrols with two hydroxyl substituents on the nucleus and two in the side chain. The human biliary bile alcohols occurred mainly as sulfate esters and in lesser amounts as glucuronoconjugated and unconjugated forms. The amount of total bile alcohols was about 0.9 mg (0.7-1.2 mg) in 1 g of bile solid, or 0.16 mumol (0.07-0.24 mumol) in 1 ml of gallbladder bile.  相似文献   

7.
M Une  J Kataoka  Y Nakata  T Hoshita 《Steroids》1992,57(1):32-36
A rapid, convenient, and specific radioimmunoassay for 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol has been developed. Specific antiserum was obtained from rabbits immunized by the bile alcohol-bovine serum albumin conjugate, which was coupled by an (O-carboxymethyl)oxime bridge at the C-3 position. The assay produces values for serum concentrations of bile alcohol glucuronides in patients with cerebrotendinous xanthomatosis.  相似文献   

8.
The bile alcohol glucuronides in urine of 12 patients with primary biliary cirrhosis (PBC), 10 patients with chronic active hepatitis (CAH), and 6 healthy volunteers were analyzed by capillary gas-liquid chromatography-mass spectrometry. In all subjects studied, the major urinary bile alcohol was found to be 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol (C26 pentol). In PBC patients, the excretion of C26 pentol (main isomer) was significantly increased above values observed in healthy volunteers (mean +/- SD = 5.2 +/- 3.5 mumol/24 h, range 1.0-13.4; versus 0.6 +/- 0.3, range 0.4-1.0). In addition, PBC patients excreted increased amounts of other bile alcohols such as isomers of C26 pentol, pentahydroxylated C27 bile alcohols (5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol) and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol) and a hexahydroxylated C26 bile alcohol (27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25,26-hexol). In CAH patients, the excretion of the C26 pentol main isomer ranged from 0.3 to 2.0 mumol/24 h (mean +/- SD = 0.7 +/- 0.5) and did not significantly differ from that in healthy volunteers. Moreover, the bile alcohol profile was comparable to those found in healthy volunteers and PBC patients. These findings show that total urinary bile alcohol glucuronide excretion is significantly increased in primary biliary cirrhosis. A PBC-specific urinary bile alcohol profile, however, does not exist.  相似文献   

9.
The nature of cholestanetetrols present as the glucurono-conjugates in human gallbladder bile was studied. Glucurono-conjugated bile alcohols were isolated by ion exchange chromatography and, after enzymatic hydrolysis, were fractionated by reversed phase partition chromatography to give a fraction containing tetrahydroxy bile alcohols which was analyzed by gas-liquid chromatography and mass spectrometry. Along with the three previously identified bile alcohols, 5 alpha- and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,24-tetrols, and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,26-tetrol, three new cholestanetetrols, possessing two hydroxyl groups in the ring system and two in the side chain, were detected in the tetrahydroxy bile alcohol fraction. These new bile alcohols were identified as 5 beta-cholestane-3 alpha, 7 alpha,24,26-tetrol, 5 beta-cholestane-3 alpha, 7 alpha,25,26-tetrol, and 5 beta-cholestane-3 alpha, 7 alpha,26,27-tetrol by direct comparison of their gas-liquid chromatographic behaviors and mass spectral data with those of authentic standards prepared from chenodeoxycholic acid by partial synthesis.  相似文献   

10.
A new bile alcohol, 5 beta-cholestanehexol, was identified in the urine of healthy humans as the glucuronide. The bile alcohol glucuronide fraction was isolated by an ion exchange chromatography on piperidinohydroxypropyl Sephadex LH-20. After enzymatic hydrolysis, the bile alcohols were converted into trimethylsilyl ether derivatives and analyzed by a combination of gas-liquid chromatography and mass spectrometry. The major bile alcohol was 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol. As minor constituents the following C26 and C27 bile alcohols were identified: 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25,26-hexol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol. In addition to these bile alcohols, a new bile alcohol was identified as a sixth component of the urinary bile alcohols. The structure was assigned as (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25,26-hexol by the direct comparison of mass spectral data and chromatographic properties with synthetic standard. The average daily excretion of the new bile alcohol was 28.6 micrograms and 3.0% of the total bile alcohols. The presence of 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol and 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25,26-hexol suggests that 26-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol is most likely for the biosynthesis of this new bile alcohol.  相似文献   

11.
The accumulation of various 25-hydroxylated C(27)-bile alcohols in blood and their excretion in urine are characteristic features of cerebrotendinous xanthomatosis (CTX) a recessively inherited inborn error of bile acid synthesis caused by mutations in the mitochondrial sterol 27-hydroxylase (CYP27) gene. These bile alcohols may be intermediates in the alternative cholic acid side chain cleavage pathway. The present study was undertaken to identify enzymes and reactions responsible for the formation of these bile alcohols and to explain why Cyp27(-/-) mice do not show CTX-related abnormalities. Microsomal activities of 5beta-cholestane-3alpha,7alpha,12alpha-triol 25- and 26-hydroxylases, 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 23R-, 24S-, and 27-hydroxylases and testosterone 6beta-hydroxylase, a marker enzyme for CYP3A, in Cyp27(-/-) mice livers were markedly up-regulated (5.5-, 3.5-, 6.5-, 7.5-, 2.9-, and 5.4-fold, respectively). In contrast, these enzyme activities were not increased in CTX. The activities of 5beta-cholestane-3alpha,7alpha,12alpha-triol 25- and 26-hydroxylases and 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 23R-, 24R-, 24S-, and 27-hydroxylases were strongly correlated with the activities of testosterone 6beta-hydroxylase in control human liver microsomes from eight unrelated donors. Troleandomycin, a specific inhibitor of CYP3A, markedly suppressed these microsomal side chain hydroxylations in both mouse and human livers in a dose-dependent manner. In addition, experiments using recombinant overexpressed human CYP3A4 confirmed that these microsomal side chain hydroxylations were catalyzed by a single enzyme, CYP3A4. The results demonstrate that microsomal 25- and 26-hydroxylations of 5beta-cholestane-3alpha,7alpha,12alpha-triol and microsomal 23R-, 24R-, 24S-, and 27-hydroxylations of 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol are mainly catalyzed by CYP3A in both mice and humans. Unlike Cyp27(-/-) mice, CYP3A activity was not up-regulated despite marked accumulation of 5beta-cholestane-3alpha,7alpha,12alpha-triol in CTX.  相似文献   

12.
Cerebrotendinous xanthomatosis (CTX) is a rare, recessively inherited lipid storage disease characterized by a markedly reduced production of chenodeoxycholic acid and an increased formation of 25-hydroxylated bile alcohols and cholestanol. Patients with this disease are known to have mutations in the sterol 27-hydroxylase (Cyp27) gene. However, one study showed that mice with a disrupted Cyp27 gene did not have any CTX-related clinical or biochemical abnormalities. To explore the reason, hepatic cholesterol, cholestanol, and 12 intermediates in bile acid biosynthetic pathways were quantified in 10 Cyp27(-/-) and 7 Cyp27(+/+) mice, two CTX patients (untreated and treated with chenodeoxycholic acid), and four human control subjects by high resolution gas chromatography-mass spectrometry. Mitochondrial 27-hydroxycholesterol and 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol were virtually absent in both Cyp27(-/-) mice and CTX patients. In Cyp27(-/-) mice, microsomal concentrations of intermediates in the early bile acid biosynthetic pathway (7alpha-hydroxycholesterol, 7alpha-hydroxy-4-cholesten-3-one, 7alpha,12alpha-dihydroxy-4-cholesten-3-one, and 5beta-cholestane-3alpha,7alpha,12alpha-triol), 25-hydroxylated bile alcohols (5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, 5beta-cholestane-3alpha,7alpha,12alpha,23R,25-pentol, and 5beta-cholestane-3alpha,7alpha,12alpha,24R, 25-pentol), and cholestanol were all significantly elevated compared with those in Cyp27(+/+) mice, although the levels were lower than those in untreated CTX patients. The intermediate levels in early bile acid biosynthesis were more elevated in male (16;-86% of CTX) than in female Cyp27(-/-) mice (7-30% of CTX). In contrast, 25-hydroxylated bile alcohol concentrations were not significantly different between male and female Cyp27(-/-) mice and were considerably lower (less than 14%) than those in CTX patients.These results suggest that 1) in Cyp27(-/-) mice, especially in females, classic bile acid biosynthesis via 7alpha-hydroxycholesterol is not stimulated as much as in CTX patients; and 2) formed 25-hydroxylated bile alcohols are more efficiently metabolized in Cyp27(-/-) mice than in CTX patients.  相似文献   

13.
B Dayal  G S Tint  G Salen 《Steroids》1979,34(5):581-588
A convenient procedure for the synthesis of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol (23R and 23S) and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12alpha,26-tetrol (25R and 25S) starting from 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol was developed. Dehydration of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha, 25-tetrol with glacial acetic acid and acetic anhydride yielded a mixture of 24-nor-5 beta-cholest-23-ene-3 alpha,7 alpha,12 alpha-triol and the corresponding delta 25 compound. Hydroboration and oxidation of the mixture of unsaturated nor-triols resulted in the formation of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrols (23R and 23S) and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrols (25R and 25S). In addition, smaller amounts of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22 xi-tetrol and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol were also obtained. The C26 bile alcohols epimeric at C-23 and C-25 were resolved by analytical and preparative TLC and characterized by gas-liquid chromatography and mass spectrometry. Provisional assignment of the configurations of the C-23 and C-25 hydroxyl groups were made on the basis of molecular rotation differences. These C26 alcohols will be used to test the stereospecificity of the hepatic enzymes that promote oxidation of the cholesterol side chain.  相似文献   

14.
The metabolism of a C26 bile alcohol (I, 24-nor-5beta-cho-lestane-3alpha, 7alpha,25-triol) was studied in the isolated perfused rabbit liver. The new bile alcohol and bile acid metabolites secreted into the bile were isolated and identified by a combination of TLC, GLC and GLC-MS. The following bile alcohols were found: II, 24-nor-5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, III, 24-nor-5beta-cholestane-3alpha,7alpha,12alpha,25,26-pentol; IV, 24-nor-5beta-cholest-23-ene-3alpha,7alpha,12alpha-triol; and V, 24-nor-5beta-cholest-23-ene-3alpha,7alpha-diol. In the bile acid fraction, 24-nor-cholic acid and 3alpha,7alpha,12alpha-trihydroxy-24-nor-5beta-cholest-23-en-26-oic acid were present. The perfused nor-triol was not resistant to 12alpha-hydroxylation.  相似文献   

15.
Side chain oxidation and cleavage of precursors in cholic acid synthesis is thought to involve initial hydroxylation at either position 25 or 26 of the side chain. Therefore, the conversion of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 26-tetrol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol into cholic acid was studied in normal subjects after single intravenous injections of these labeled alcohols. Eighty-six percent and 82% of 5 beta-cholestane, 3 alpha, 7 alpha, 12 alpha, 26-tetrol was converted into cholic acid in two subjects, respectively. However, only 14 and 16% of the injected 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol was converted into cholic acid in two subjects, respectively. Thus, this study indicates that 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol is an inefficient substrate for cholic acid biosynthesis in man and that the major route of cholic acid synthesis probably involves the 26-hydroxylated intermediate.  相似文献   

16.
The bile alcohols present in the feces of a patient with cerebrotendinous xanthomatosis were studied. Three bile alcohols which are different from any known natural bile alcohol were isolated as minor components of the fecal bile alcohol fraction. The structures of these compounds were established as 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 23 beta-tetrol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24 alpha-tetrol, and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24 beta-tetrol by comparison with synthetic samples.  相似文献   

17.
The bile salts present in gallbladder bile of the West Indian manatee, Trichechus manatus latirostris, an herbivorous marine mammal of the tropical and subtropical margins of the Atlantic Ocean, were found to consist of a mixture of bile alcohol sulfates. Bile acids, previously believed to be present in all mammals, were not detected. Using chromatography, mass spectrometry, and 1H- and 13C-nuclear magnetic resonance spectroscopy, the major bile alcohol was identified as 5 beta-cholestane-3 alpha,6 beta,7 alpha-25,26-pentol; that is, it had the nuclear structure of alpha-muricholic acid and the side chain structure of bufol. This compound has not been described previously and the trivial name "alpha-trichechol" is proposed. The second most abundant compound was 5 beta-cholestane-3 alpha,7 alpha,25,26-tetrol. Other bile alcohols were tentatively identified as 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol (named beta-trichechol), 3 alpha,6 alpha,7 beta, 25-26-pentol (named omega-trichechol) and 5 beta-cholestane-3 alpha,6 beta,7 alpha,26-tetrol. The 1H and 13C NMR spectra of the four 6,7 epimers of 3,6,7 trihydroxy bile acids are described and discussed. All bile alcohols were present as ester sulfates, the sulfate group being tentatively assigned to the 26-hydroxy group. 12-Hydroxy compounds were not detected. The manatee is the first mammal found to lack bile acids, presumably because it lacks the enzymes required for oxidation of the 26-hydroxy group to a carboxylic acid. Trichechols, like other bile salts, are water-soluble end products of cholesterol metabolism; whether they also function as biological surfactants in promoting biliary cholesterol secretion or lipid digestion is unknown.  相似文献   

18.
B Dayal  G Salen  G S Tint  S Shefer  S W Benz 《Steroids》1990,55(2):74-78
The identification of a major biliary and plasma bile alcohol glucuronide, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol-3-0-beta-D-glucuronide, present in cerebrotendinous xanthomatosis (CTX) patients, was investigated by positive ion fast atom bombardment mass spectrometry (FAB-MS). The spectrum was characterized by abundant ions formed by attachment of a proton, [M + H]+, or of alkali ions, [M + Na]+ and [M + 39K]+, to the glucuronide salt. These ions allowed an unambiguous deduction of the molecular weight of the sample. It is suggested that FAB-MS could be used in the rapid diagnosis of CTX.  相似文献   

19.
M Murata  T Kuramoto  T Hoshita 《Steroids》1978,31(3):319-332
Rabbit bile was examined for bile alcohols. Using combined gas chromatography-mass spectrometry, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25,26-pentol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25--tetrol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,24 beta-tetrol, 24-methyl-25-homo-5 beta-cholane-3 alpha, 7 alpha, 12 alpha, 24-tetrol, and 5 alpha-cholestane-3 alpha, 7 alpha, 12 alpha, 24 beta-tetrol were identified as the minor constituents of normal rabbit bile.  相似文献   

20.
This paper describes studies dealing with the nature of the C27 pentahydroxy bile alcohols present in the bile and feces of two patients with cerebrotendinous xanthomatosis (CTX). The presence of a bile alcohol having the structure 5beta-cholestane-3alpha,7alpha,12alpha,24alpha,25-pentol was confirmed by separation of the two 24-hydroxy epimers of 5beta-cholestane-3alpha,7alpha,12alpha,24,25-pentol and characterization of the dpimers by gas-liquid chromatography and infrared and mass spectrometry. Tentative assignment of the 24alpha and 24beta configuration was made on the basis of molecular rotation differences. A second major bile alcohol excreted by the CTX subjects was 5beta-cholestane-3alpha,7alpha,12alpha,23xi,25-pentol. Its structure was determined by infrared spectrometry, proton magnetic resonance spectrometry, and mass spectrometry because a reference compound was not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号