首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tubulin folding cofactor D is a microtubule destabilizing protein   总被引:1,自引:0,他引:1  
A rapid switch between growth and shrinkage at microtubule ends is fundamental for many cellular processes. The main structural components of microtubules, the alphabeta-tubulin heterodimers, are generated through a complex folding process where GTP hydrolysis [Fontalba et al. (1993) J. Cell Sci. 106, 627-632] and a series of molecular chaperones are required [Sternlicht et al. (1993) Proc. Natl. Acad. Sci. USA 90, 9422-9426; Campo et al. (1994) FEBS Lett. 353, 162-166; Lewis et al. (1996) J. Cell Biol. 132, 1-4; Lewis et al. (1997) Trends Cell Biol. 7, 479-484; Tian et al. (1997) J. Cell Biol. 138, 821-823]. Although the participation of the cofactor proteins along the tubulin folding route has been well established in vitro, there is also evidence that these protein cofactors might contribute to diverse microtubule processes in vivo [Schwahn et al. (1998) Nature Genet. 19, 327-332; Hirata et al. (1998) EMBO J. 17, 658-666; Fanarraga et al. (1999) Cell Motil. Cytoskel. 43, 243-254]. Microtubule dynamics, crucial during mitosis, cellular motility and intracellular transport processes, are known to be regulated by at least four known microtubule-destabilizing proteins. OP18/Stathmin and XKCM1 are microtubule catastrophe-inducing factors operating through different mechanisms [Waters and Salmon (1996) Curr. Biol. 6, 361-363; McNally (1999) Curr. Biol. 9, R274-R276]. Here we show that the tubulin folding cofactor D, although it does not co-polymerize with microtubules either in vivo or in vitro, modulates microtubule dynamics by sequestering beta-tubulin from GTP-bound alphabeta-heterodimers.  相似文献   

2.
Microtubule assembly in vivo was studied by hapten-mediated immunocytochemistry. Tubulin was derivatized with dichlorotriazinylaminofluorescein (DTAF) and microinjected into living, interphase mammalian cells. Sites of incorporation were determined at the level of individual microtubules by double-label immunofluorescence. The haptenized tubulin was localized by an anti-fluorescein antibody and a second antibody conjugated with fluorescein. Total microtubules were identified by anti-tubulin and a secondary antibody conjugated with rhodamine. Contrary to recent studies (Salmon, E. D., et al., 1984, J. Cell Biol., 99:2165-2174; Saxton, W. M., et al., 1984, J. Cell Biol., 99:2175-2186) which suggest that tubulin incorporates all along the length of microtubules in vivo, we found that microtubule assembly in interphase cells was in vivo, as in vitro, an end-mediated process. Microtubules that radiated out toward the cell periphery incorporated the DTAF-tubulin solely at their distal, that is, their plus ends. We also found that a proportion of the microtubules connected to the centrosomes incorporated the DTAF-tubulin along their entire length, which suggests that the centrosome can nucleate the formation of new microtubules.  相似文献   

3.
It is known that histone H1 is able to cause the formation of double-walled microtubules from microtubule protein. Now, we demonstrate that in dependence on the mass ratio H1/microtubule protein upon addition of tubulin to short pieces of double-walled microtubules either their inner or their outer wall elongates resulting in normal microtubules or in macrotubules, respectively. Because of their genesis we suggest that macrotubules like double-walled microtubules (see Unger et al., Eur. J. Cell Biol. 46, 98-104 (1988)) expose those sides of tubulin dimers at their surface which usually form the lumen face of microtubules.  相似文献   

4.
We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.  相似文献   

5.
We have used a polyclonal antibody (Ab196) that specifically recognizes the betaII tubulin isotype to examine the subcellular distribution and properties of microtubules enriched in this isotype. Antibody specificity was tested by a method that involves the analysis of its interaction with individual beta isotypes. Using photoimaging analysis, we observed betaII tubulin-enriched microtubules in the perinuclear region, as well as in the microtubules close to the periphery of interphase cells. The observed sorting of betaII-enriched microtubules together with the reported increased levels of betaII tubulin in taxol-resistant cells (M. Haber et al., 1995, J. Biol. Chem. 270, 31269-31275) prompted us to study the behavior of microtubules enriched in this isotype after different depolymerizing treatments. After cold or nocodazol treatments, betaII-enriched microtubules anchored at the centrosome and at the cell periphery were observed. In addition, cold-resistant microtubules were marked mainly by the specific anti-betaII tubulin antibody but not by anti-acetylated alpha tubulin, suggesting the presence of different stable microtubule subsets enriched in particular tubulin isoforms.  相似文献   

6.
The alga polytomella contains several organelles composed of microtubules, including four flagella and hundreds of cytoskeletal microtubules. Brown and co-workers have shown (1976. J. Cell Biol. 69:6-125; 1978, Exp. Cell Res. 117: 313-324) that the flagella could be removed and the cytoskeletans dissociated, and that both structures could partially regenerate in the absence of protein synthesis. Because of this, and because both the flagella and the cytoskeletons can be isolated intact, this organism is particularly suitable for studying tubulin heterogeneity and the incorporation of specific tubulins into different microtubule-containing organelles in the same cell. In order to define the different species of tubulin in polytonella cytoplasm, a (35)S- labeled cytoplasmic fraction was subjected to two cycles of assembly and disassembly in the presence of unlabeled brain tubulin. Comparison of the labeled polytomella cytoplasmic tubulin obtained by this procedure with the tubulin of isolated polytomella flagella by two-dimensional gel electrophoresis showed that, whereas the β-tubulin from both cytoplasmic and flagellar tubulin samples comigrated, the two α-tubulins had distinctly different isoelectic points. As a second method of isolating tubulin from the cytoplasm, cells were gently lysed with detergent and intact cytoskeletons obtained. When these cytoskeletons were exposed to cold temperature, the proteins that were released were found to be highly enriched in tubulin; this tubulin, by itself, could be assembled into microtubules in vitro. The predominant α-tubulin of this in vitro- assembled cytoskeletal tubulin corresponded to the major cytoplasmic α-tubulin obtained by coassembly of labeled polytomella cytoplasmic extract with brain tubulin and was quite distinct from the α-tubulin of purified flagella. These results clearly show that two different microtubule-containing organelles from the same cell are composed of distinct tubulins.  相似文献   

7.
We have studied the self-association reactions of purified GDP-liganded tubulin into double rings and taxoid-induced microtubules, employing synchrotron time-resolved x-ray solution scattering. The experimental scattering profiles have been interpreted by reference to the known scattering profiles to 3 nm resolution and to the low-resolution structures of the tubulin dimer, tubulin double rings, and microtubules, and by comparison with oligomer models and model mixtures. The time courses of the scattering bands corresponding to the different structural features were monitored during the assembly reactions under varying biochemical conditions. GDP-tubulin essentially stays as a dimer at low Mg(2+) ion activity, in either the absence or presence of taxoid. Upon addition of the divalent cations, it associates into either double-ring aggregates or taxoid-induced microtubules by different pathways. Both processes have the formation of small linear (short protofilament-like) tubulin oligomers in common. Tubulin double-ring aggregate formation, which is shown by x-ray scattering to be favored in the GDP- versus the GTP-liganded protein, can actually block microtubule assembly. The tubulin self-association leading to double rings, as determined by sedimentation velocity, is endothermic. The formation of the double-ring aggregates from oligomers, which involves additional intermolecular contacts, is exothermic, as shown by x-ray and light scattering. Microtubule assembly can be initiated from GDP-tubulin dimers or oligomers. Under fast polymerization conditions, after a short lag time, open taxoid-induced microtubular sheets have been clearly detected (monitored by the central scattering and the maximum corresponding to the J(n) Bessel function), which slowly close into microtubules (monitored by the appearance of their characteristic J(0), J(3), and J (n) - (3) Bessel function maxima). This provides direct evidence for the bidimensional assembly of taxoid-induced microtubule polymers in solution and argues against helical growth. The rate of microtubule formation was increased by the same factors known to enhance taxoid-induced microtubule stability. The results suggest that taxoids induce the accretion of the existing Mg(2+)-induced GDP-tubulin oligomers, thus forming small bidimensional polymers that are necessary to nucleate the microtubular sheets, possibly by binding to or modifying the lateral interaction sites between tubulin dimers.  相似文献   

8.
Chicken erythrocyte tubulin containing a unique beta tubulin variant polymerizes with greater efficiency (lower critical concentration) but at a slower rate than chicken brain tubulin. In a previous study we demonstrated that the low net rate of assembly is partly due to the presence of large oligomers and rings which reduce the initial rate of subunit elongation on microtubule seeds (Murphy, D.B., and Wallis, K.T. (1985) J. Biol. Chem. 260, 12293-12301). In this study we show that erythrocyte tubulin oligomers also retard the rate of microtubule nucleation and the net rate of self-assembly. The inhibitory effect is most likely to be due to the increased stability of erythrocyte tubulin oligomers, including a novel polymer of coiled rings that forms during the rapid phase of microtubule polymerization. The slow rate of dissociation of rings and coils into dimers and small oligomers appears to limit both the nucleation and elongation steps in the self-assembly of erythrocyte microtubules.  相似文献   

9.
《The Journal of cell biology》1996,133(6):1347-1353
To determine whether tubulin molecules transported in axons are polymers or oligomers, we carried out electron microscopic analysis of the movement of the tubulin molecules after photoactivation. Although previous optical microscopic analyses after photobleaching or photoactivation had suggested that most of the axonal microtubules were stationary, they were not sufficiently sensitive to allow detection of actively transported tubulin molecules which were expected to be only a small fraction of total tubulin molecules in axons. In addition, some recent studies using indirect approaches suggested active polymer transport as a mechanism for tubulin transport (Baas, P.W., F.J. Ahmad. 1993. J. Cell Biol. 120:1427-1437; Yu, W., V.E. Centonze, F.J. Ahmad, and P.W. Bass, 1993, J. Cell Biol. 122:349-359; Ahmad, F.J., and P.W. Bass. 1995. J. Cell Sci. 108:2761-2769). So, whether transported tubulin molecules are polymers or not remain to be determined. To clear up this issue, we made fluorescent marks on the tubulin molecules in the axons using a photoactivation technique and performed electron microscopic immunocytochemistry using anti-fluorescein antibody. Using this new method we achieved high resolution and high sensitivity for detecting the transported tubulin molecules. In cells fixed after permeabilization, we found no translocated microtubules. In those fixed without permeabilization, in which oligomers and heterodimers in addition to polymers were preserved, we found much more label in the regions distal to the photoactivated regions than in the proximal regions. These data indicated that tubulin molecules are transported not as polymers but as heterodimers or oligomers by an active mechanism rather than by diffusion.  相似文献   

10.
P Barbier  C Gregoire  F Devred  M Sarrazin  V Peyrot 《Biochemistry》2001,40(45):13510-13519
Cryptophycin 52 (C52) is a new synthetic compound of the cryptophycin family of antitumor agents that is currently undergoing clinical evaluation for cancer chemotherapy. The cryptophycin class of compounds acts on microtubules. This report details the mechanism by which C52 substoichiometrically inhibits tubulin self-assembly into microtubules. The inhibition data were analyzed through a model described by Perez-Ramirez [Perez-Ramirez, B., Andreu, J. M., Gorbunoff, M. J., and Timasheff, S. N. (1996) Biochemistry 35, 3277-3285]. We thereby determined the values of the apparent binding constant of the tubulin-C52 complex to the end of a growing microtubule (K(i)) and the apparent binding constant of C52 to tubulin (K(b)). The binding of C52 depended on tubulin concentration, and binding induced changes in the sedimentation pattern of tubulin, which indicates that C52 induces the self-association of tubulin and tubulin aggregates other than microtubules. Using analytical ultracentrifugation and electron microscopy, we show that C52 induces tubulin to form ring-shaped oligomers (single rings). We also show that C52 inhibits the formation of double rings from either GTP- or GDP-tubulin. In addition, the advances made by electron crystallography in understanding the structure of the tubulin and the microtubule allowed us to visualize the putative binding site of C52 and to reconstruct C52-induced ring oligomers by molecular modeling.  相似文献   

11.
12.
It has been shown in mammalian systems that the passage of transferrin-colloidal gold (Tf-Au) through the endocytic system is influenced by the size of the gold colloid (Neutra, M. R. et al., J. Histochem. Cytochem. 33, 1134-1144 (1985); Woods, J. W. et al., Eur. J. Cell Biol. 50, 132-143 (1989)). However, in both Trypanosoma brucei brucei and Trypanosoma congolense, widely varying sizes of Tf-Au (Tf-Au5 and Tf-Au15) have been shown to proceed to lysosomes (Webster, P., Eur. J. Cell Biol. 49, 295-302 (1989); Webster, P., D. Grab, J. Cell Biol. 106, 279-288 (1988)). Using an affinity-purified anti-bovine transferrin IgG we have demonstrated that, in both T. brucei and T. congolense, native transferrin, like Tf-Au, is found in the flagellar pocket, coated vesicles, tubular structures, and lysosome-like organelles where it appears to be concentrated. The presence of Tf in the lysosomes was confirmed in colocalization experiments using T. congolense, where native bovine transferrin colocalized with a trypanosome lysosomal marker, a cysteine protease. The data suggest that, unlike the situation in mammalian cells where most transferrin is recycled to the cell surface, in African trypanosomes transferrin is routed into lysosomes and may not, therefore, be recycled.  相似文献   

13.
Brain tubulin has been conjugated with dichlorotriazinyl- aminofluorescein (DTAF) to form a visualizable complex for the study of tubulin dynamics in living cells. By using several assays we confirm the finding of Keith et al. (Keith, C. H., J. R. Feramisco, and M. Shelanski, 1981, J. Cell Biol., 88:234-240) that DTAF-tubulin polymerizes like control tubulin in vitro. The fluorescein moiety of the complex is readily bleached by the 488-nm line from an argon ion laser. When irradiations are performed over short times (less than 1 s) and in the presence of 2 mM glutathione, a mixture of DTAF-tubulin and control protein (as occurs after microinjection of the fluorescent conjugate into living cells) will retain full polymerization activity. Slow bleaching (approximately 5 min) or bleaching without glutathione promotes formation of covalent cross-links between neighboring polypeptides and kills the polymerization activity of DTAF-tubulin, including some molecules that are neither cross-linked nor bleached. Even under conditions that damage DTAF-tubulin, however, DTAF- microtubules are not destroyed by bleaching. They will continue to elongate by addition of DTAF-tubulin subunits to their free ends, and they neither bind nor exchange subunits along their lateral surfaces. These results suggest that DTAF-tubulin is a suitable analog for tubulin, both in studies of protein incorporation and for investigations of fluorescence redistribution after photobleaching.  相似文献   

14.
Trypsin treatment of staphylococcal alpha-toxin cleaves the molecule into two roughly equally sized parts, which results in inactivation of the toxin. Tetragonal arrays of oligomers, closely resembling the native ones, can however be formed on lipid layers. From tilted views of negatively stained crystals a 3D structure to 23 A resolution has been determined by electron microscopy and image processing. On comparison with the 3D structure of the native alpha-toxin (Olofsson et al., J. Mol. Biol. 214, 299-306, 1990) the subdomains are more separated, confirming the differences found when comparing the projection maps (Olofsson et al., J. Struct. Biol. 106, 199-204, 1991). The tryptic cleavage takes place in a postulated hinge region. The results are consistent with the hypothesis that the conformational change required for inducing the membrane permeabilizing property takes place in this region. Furthermore, we present a refined projection map at approximately 10 A resolution based on the analysis of a large number of crystals using unbending methods.  相似文献   

15.
A heat-stable microtubule-associated protein (MAP) with a molecular weight of 190,000, termed 190-kDa MAP, has been purified from bovine adrenal cortex (Murofushi, H. et al. (1986) J. Cell Biol. 103, 1911-1919). Immunoblotting experiments using an antibody against this MAP revealed that several kinds of culture cells derived from human tissues contain proteins with an apparent molecular weight of 180,000 reacting with the antibody. Indirect immunofluorescence microscopic observation of HeLa cells showed that the immunoreactive protein co-exists with microtubules, indicating that the protein is one of the HeLa MAPs. A heat-stable MAP with a molecular weight of 180,000, termed here HeLa 180-kDa MAP, was purified by the taxol-dependent procedure (Vallee, R.B. (1982) J. Cell Biol. 92, 435-442) and successive co-polymerization with brain tubulin. This protein was the most abundant MAP in HeLa cells, suggesting that the MAP is identical to the major HeLa MAP previously reported by Bulinski and Borisy (Bulinski, J.C. & Borisy, G.G. (1980) J. Biol. Chem. 255, 11570-11576) and Weatherbee et al. [1980) Biochemistry 19, 4116-4123). It was shown that, like bovine adrenal 190-kDa MAP, yet distinct from brain MAP2 and tau, purified HeLa 180-kDa MAP does not interact with actin filaments. This common characteristic of the two MAPs along with the same heat-stability strongly suggests that they are members of the same group of MAPs. The fact that HeLa 180-kDa MAP reacts with an antibody against bovine adrenal 190-kDa MAP means that they share common epitopes, in other words, common local amino acid sequences. However, the limited proteolytic patterns of the two MAPs with S. aureus V8 protease and chymotrypsin were distinct from each other, suggesting the presence of large differences in the overall primary structures between bovine adrenal 190-kDa MAP and HeLa 180-kDa MAP.  相似文献   

16.
S Kotani  G Kawai  S Yokoyama  H Murofushi 《Biochemistry》1990,29(43):10049-10054
An amino acid sequence essential for microtubule-associated proteins (MAPs) to bind to microtubules is presented [Aizawa et al. (1989) J. Biol. Chem. 264, 5885-5890]. A synthetic peptide of 23 amino acid residues which corresponded to the sequence [tubulin binding peptide (TBP)] was active in binding to tubulin and inducing its assembly. The TBP-tubulin interaction mechanism was analyzed by proton nuclear magnetic resonance spectroscopy as a simplified model for MAP-microtubule interactions. Intraresidue transferred nuclear Overhauser effects (TRNOEs) of TBP in TBP-tubulin mixtures were analyzed, and strong binding of two Val and two Lys residues of TBP to tubulin was detected. Among the sharply peaked signals from tubulin aromatic residues, those due to Tyr ring protons broadened upon mixing with TBP, suggesting the involvement of Tyr residue(s) in the binding with TBP. Irradiation of the tubulin Tyr protons resulted in an intermolecular TRNOE at TBP methyl proton resonances. Evidently, hydrophobic interactions between Val and Tyr residues are important for the binding of TBP to tubulin. Hydrophobic interactions have not been taken into account previously in the widely accepted electrostatic model for the binding of MAPs to microtubules.  相似文献   

17.
Extraction of doublet microtubules from the sperm flagella of the sea urchin Strongylocentrotus purpuratus with sarkosyl (0.5%)-urea (2.5 M) yields a highly pure preparation of "tektin" filaments that we have previously shown to resemble intermediate filament proteins. They form filaments 2-3 nm in diameter as seen by negative stain electron microscopy and are composed of approximately equal amounts of three polypeptide bands with apparent molecular weights of 47,000, 51,000, and 55,000, as determined by SDS PAGE. We prepared antibodies to this set of proteins to localize them in the doublet microtubules of S. purpuratus and other species. Tektins and tubulin were antigenically distinct when tested by immunoblotting with affinity-purified antitektin and antitubulin antibodies. Fixed sperm or axonemes from several different species of sea urchin showed immunofluorescent staining with antitektin antibodies. We also used antibodies coupled to gold spheres to localize the proteins by electron microscopy. Whereas a monoclonal antitubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol. 93:576-582) decorates intact microtubules along their lengths, antitektins labeled only the ends of intact microtubules and sarkosyl-insoluble ribbons. However, if microtubules and ribbons attached to electron microscope grids were first extracted with sarkosyl-urea, the tektin filaments that remain were decorated by antitektin antibodies throughout their length. These results suggest that tektins form integral filaments of flagellar microtubule walls, whose antigenic sites are normally masked, perhaps by the presence of tubulin around them.  相似文献   

18.
H W Detrich  L Wilson 《Biochemistry》1983,22(10):2453-2462
Tubulin was purified from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus by chromatography of an egg supernatant fraction on DEAE-Sephacel or DEAE-cellulose followed by cycles of temperature-dependent microtubule assembly and disassembly in vitro. After two assembly cycles, the microtubule protein consisted of the alpha- and beta-tubulins (greater than 98% of the protein) and trace quantities of seven proteins with molecular weights less than 55 000; no associated proteins with molecular weights greater than tubulin were observed. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on urea-polyacrylamide gradient gels, the alpha- and beta-tubulins did not precisely comigrate with their counterparts from bovine brain. Two-dimensional electrophoresis revealed that urchin egg tubulin contained two major alpha-tubulins and a single major beta species. No oligomeric structures were observed in tubulin preparations maintained at 0 degrees C. Purified egg tubulin assembled efficiently into microtubules when warmed to 37 degrees C in a glycerol-free polymerization buffer containing guanosine 5'-triphosphate. The critical concentration for assembly of once- or twice-cycled egg tubulin was 0.12-0.15 mg/mL. Morphologically normal microtubules were observed by electron microscopy, and these microtubules were depolymerized by exposure to low temperature or to podophyllotoxin. Chromatography of a twice-cycled egg tubulin preparation on phosphocellulose did not alter its protein composition and did not affect its subsequent assembly into microtubules. At concentrations above 0.5-0.6 mg/mL, a concentration-dependent "overshoot" in turbidity was observed during the assembly reaction. These results suggest that egg tubulin assembles into microtubules in the absence of the ring-shaped oligomers and microtubule-associated proteins that characterize microtubule protein from vertebrate brain.  相似文献   

19.
Subsets of microtubules enriched in posttranslationally detyrosinated (Gundersen, G. G., M. H. Kalnoski, and J. C. Bulinski. 1984. Cell. 38:779) or acetylated (Piperno, G., M. Le Dizet, and X. Chang. 1987. J. Cell Biol. 104:298), alpha tubulin have previously been described in interphase cultured cells. In this study an immunofluorescence comparison of these minor populations of microtubules revealed that, in African green monkey kidney epithelial cells (TC-7 line), the population of microtubules enriched in detyrosinated tubulin was virtually coincident with the population enriched in acetylated alpha tubulin. In some cell types, however, such as human HeLa or marsupial PtK-2 cells, only one posttranslationally modified form of tubulin, i.e., acetylated or detyrosinated, respectively, was detectable in microtubules. In TC-7 cells, although both modifications were present, dissimilar patterns and kinetics of reappearance of microtubules enriched in detyrosinated and acetylated tubulin were observed after recovery of cells from microtubule-depolymerizing treatments or from mitosis. Thus, a minor population of microtubules exists in cultured cells that contains an elevated level of tubulin modified in either one or two ways. While these two modifications occur primarily on the same subset of microtubules, they differ in their patterns of formation in vivo.  相似文献   

20.
How microtubules get fluorescent speckles.   总被引:4,自引:0,他引:4       下载免费PDF全文
The dynamics of microtubules in living cells can be seen by fluorescence microscopy when fluorescently labeled tubulin is microinjected into cells, mixing with the cellular tubulin pool and incorporating into microtubules. The subsequent fluorescence distribution along microtubules can appear "speckled" in high-resolution images obtained with a cooled CCD camera (Waterman-Storer and Salmon, 1997. J. Cell Biol. 139:417-434). In this paper we investigate the origins of these fluorescent speckles. In vivo microtubules exhibited a random pattern of speckles for different microtubules and different regions of an individual microtubule. The speckle pattern changed only after microtubule shortening and regrowth. Microtubules assembled from mixtures of labeled and unlabeled pure tubulin in vitro also exhibited fluorescent speckles, demonstrating that cellular factors or organelles do not contribute to the speckle pattern. Speckle contrast (measured as the standard deviation of fluorescence intensity along the microtubule divided by the mean fluorescence intensity) decreased as the fraction of labeled tubulin increased, and it was not altered by the binding of purified brain microtubule-associated proteins. Computer simulation of microtubule assembly with labeled and unlabeled tubulin showed that the speckle patterns can be explained solely by the stochastic nature of tubulin dimer association with a growing end. Speckle patterns can provide fiduciary marks in the microtubule lattice for motility studies or can be used to determine the fraction of labeled tubulin microinjected into living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号