首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolamellar bodies were isolated from etiolated leaves of wheat ( Triticum aestivum L. cv. Walde, Weibull), which were illuminated for 4 h and then grown in darkness for 16 h. The inner etiochloroplast membranes were isolated by differential centrifugation, and prolamellar bodies and thylakoids were separated on a 10–50% continuous sucrose density gradient. The reformed prolamellar bodies contained phototransformable protochlorophyllide as the main pigment as shown by low temperature fluorescence spectra and high performance liquid chromatography. After illumination with 3 flashes of white light almost all of the protochlorophyllide was transformed to chlorophyllide. In the thylakoids, however, most of the protochlorophyllide was not phototransformed. The reformed prolamellar bodies and the thylakoids showed a fluorescence emission ratio 657/633 nm of 5.6 and 0.5, respectively. Both membrane systems contained also chlorophyllide and chlorophyll synthesized during the illumination. Polyacrylamide gel electrophoresis showed the main chlorophyllide oxidoreductasse.
Teransmission and scanning electron micrographs indicated that the reformed prolamellar bodies are mainly of the "narrow" type and that the prolamellar body fraction had only a minor contamination with thylakoid membranes.
The results obtained showed that reformed prolamellar bodies isolated from illuminated redarkened etiolated wheat leaves had features very similar to the prolamellar bodies isolated from etiolated leaves. This provides support for the idea that prolamellar bodies are an important natural membrane system which plays a dynamic role in the development of the etio-chloroplasts in light.  相似文献   

2.
The ultrastructure of plastids was investigated in succulent leaves ofSedum rotundifolium to examine their changes during development. Leaves were categorized as etiolated, immature, young, and mature, based on their developmental stage and size. Of particular interest were the features of the tubular inclusion bodies (TIBs) and starch grains. These, along with vacuole size, showed remarkable changes over time. Etioplasts of unexposed leaves had prolamellar bodies, abundant starch grains, large TIB, few plastoglobuli, and thylakoid systems. Membranes of the thylakoids were still continuous with those of the prolamellar body. The plastids were often influenced by the presence and profile of inclusion bodies and starch grains throughout the early stages. Morphology was highly variable in the etioplasts but consistently hemispherical or ovoid in mature chloroplasts. TIB was most abundant in the etiolated leaves, but disappeared completely with development. Starch grains also became significantly reduced in size. Both young and mature mesophyll cells exhibited a normal chloroplast ultra-structure and huge central vacuoles, with an extremely thin peripheral cytoplasm. Grana were extensive and comprised a large portion of the chloroplasts. Traces of peripheral reticulum were also discovered in the chloroplasts of expanded leaves. The implications of these ultrastructural changes in the tubular inclusions and starch grains are discussed with relevance to Crassulacean acid metabolism (CAM).  相似文献   

3.
Bean leaves grown under periodic illumination (56 cycles of 2 min light and 98 min darkness) were subsequently exposed to continuous illumination, and in connection with granum formation and accumulation of the light-harvesting pigment-protein complex thermoluminescence and light-induced shrinkage of thylakoid membranes were studied. Juvenile chloroplasts with large double sheets of thylakoids obtained under periodic light exhibited low temperature spectra of polarized fluorescence yielding fluorescence polarization (FP) values < 1 at 695 nm, characteristic for pheophytin emission. In the course of maturation under continuous light when normal grana appeared and the chlorophyll a/b light-harvesting photosystem II complex was incorporated into the membrane, at 695 nm the relative intensity of fluorescence dropped and FP changed to a value of > 1, suggesting an overlap between the emission of pheophytin and that of the chlorophyll a/b light-harvesting photosystem II complex. Thermoluminescence glow curves recorded with juvenile thylakoids displayed a relatively high proportion of emission at low temperatures (around -10°C) while with mature chloroplasts, more thermoluminescence originated from energetically deeper traps (discharged around 28°C). This means that during thylakoid development the capacity of the membrane to stabilize the separated charges increases, which might be favourable for the ultimate conservation of energy. The more extensive energization of mature thylakoids was also indicated by a light-induced decrease in the thickness of the membranes upon illumination; a change which could not be detected in juvenile thylakoids.Abbreviations EDTA ethylenediamine tetraacetic acid - Hepes 4-(2-hydroxy ethyl)-1-piperazine ethane sulfonic acid Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

4.
A quasi-crystalline lamellar lattice was observed in chloroplasts of the filamentous green alga Zygnema. The lattice does not appear in the cells until cultures are at the end of the log phase of growth. Pseudograna are also present and become more numerous towards the middle of the log phase. The three-dimensional lattice superficially resembles the configuration of cubic prolamellar bodies but is about 10 times larger and is entirely different in internal structure. The lattice is composed of one or two appressed thylakoids in a stroma matrix which is bounded on each side by a single thylakoid membrane. This multilayered sandwich of membranes and matrix occupies a position equivalent to the single membrane of a cubic prolamellar body.  相似文献   

5.
Summary The location of DNA containing nucleoids has been studied in greening bean (Phaseolus vulgaris L.) etioplasts using electron microscopy of thin sections and the staining of whole leaf cells with the fluorochrome DAPI. At 0 hours illumination a diffuse sphere of cpDNA surrounds most of the prolamellar body. It appears to be made up of a number of smaller nucleoids and can be asymmetric in location. The DNA appears to be attached to the outside of the prolamellar body and to prothylakoids on its periphery. With illumination the nucleoid takes on a clear ring-like shape around the prolamellar body. The maximum development of the ring-like nucleoid at 5 hours illumination is associated with the outward expansion of the prolamellar body and the outward growth of the prothylakoids. At 5 hours the electron transparent areas lie in between the prothylakoids radiating out from the prolamellar body. Between 5 hours and 15 hours observations are consistent with the growing thylakoids separating the nucleoids as the prolamellar body disappears and the chloroplast becomes more elongate. At 15 hours the fully differentiated chloroplast has discrete nucleoids distributed throughout the chloroplast with evidence of thylakoid attachment. This is the SN (scattered nucleoid) distribution ofKuroiwa et al. (1981) and is also evident in 24 hours and 48 hours chloroplasts which have more thylakoids per granum. The changes in nucleoid location occur without significant changes in DNA levels per plastid, and there is no evidence of DNA or plastid replication.The observations indicate that cpDNA partitioning in dividing SN-type chloroplasts could be achieved by thylakoid growth and effectively accomplish DNA segregation, contrasting with envelope growth segregating nucleoids in PS-type (peripheral scattered nucleoids) chloroplasts. The influence of plastid development on nucleoid location is discussed.  相似文献   

6.
Ultrastructural autoradiographic studies after application of 3H-lysine indicate that during the transformation of the etioplasts into chlorplasts in the bean (Phaseolus vulgaris) the protein synthesis in plastids occurs mainly near the thylakoid membranes and the prolamellar bodies: most of the autoradiographic grains are placed over the structures. After 24 h postincubation in nonradioactive medium the ratio of the number of silver grains associated with thylakoids to those over stroma increases more than 2.5 times in control plants, whereas in cells treated with chloramphenicol only 1.5 times. Simultaneously in chloramphenicol-treated plants an increase in plastid envelope labelling is observed. It has been assumed that chloramphenicol, having no inhibitory effect on the synthesis and transport of proteins imported from the cytoplasm to the plastid, lowers their penetration inside the plastid as well as their incorporation into the thylakoid membrane.  相似文献   

7.
Developing chromoplasts in the fruit of Capsicum annuum were examined by electron microscopy. Special attention was given to changes in the thylakoid system. All grana and some intergranal thylakoids in the mature chromoplasts of the seven cultivars studied underwent lysis. The particulate nature of the granal membranes disappeared during lysis before the relationship between the partitions and locules was obscured. The changes during lysis support the globular concept of membrane structure. The selective lysis of the synaptic membranes of the granal partitions may be attributed to their distinctive composition and structure. Lipid globules (osmio-philic) did not accumulate in the immediate region of granal lysis, indicating that they are not directly derived from membranes undergoing degradation. During and following granal lysis a profuse development of intergranal thylakoid membranes occurred in several cultivars. In some instances a thylakoid plexus (prolamellar body) was formed. This specialized structure of the thylakoid system occurs in the chromoplasts of other species as well as in other types of plastids. Extensive, concentrically arranged thylakoid sheets with specific interspaced membrane relationships were frequently associated with the plexus. Several types of membrane associations and interrelationships in the plastid are described. An analysis of one type of membrane configuration, the thylakoid sheets, indicated that one method of growth may be through intussusception into the original membrane. The development of thylakoid plexes and of extensive thylakoid sheets during or after granal lysis indicates that dynamic synthetic activities occur in the chromoplasts of some cultivars of pepper during fruit ripening.  相似文献   

8.
A. Mostowska 《Protoplasma》1986,131(2):166-173
Summary We analyzed transformation, recrystallization, splitting and dispersion of prolamellar bodies during chloroplast development in pea seedlings illuminated by white, red and blue light of low intensity. With the help of a stereometric method we determined that there was a significant increase of prolamellar body number and a sharp decrease of their volume in differentiating chloroplast even in the first 2 hours of illumination. Decrease of prolamellar body dimensions was due both to gradual dispersion of its elements into primary thylakoids (indicated by the decrease of total volume of prolamellar bodies in plastid) and to splitting of prolamellar bodies (indicated by the increase of number of promellar bodies in plastid). Red light was more effective in transformation, splitting and dispersion of prolamellar bodies than blue light during the first 8–12 hours. Longer treatment with blue light had a stronger influence on these processes and on complete recrystallization than other light treatments.  相似文献   

9.
Early seedling development in plants depends on the biogenesis of chloroplasts from proplastids, accompanied by the formation of thylakoid membranes. An Arabidopsis thaliana gene, AtTerC , whose gene product shares sequence similarity with bacterial tellurite resistance C (TerC), is shown to be involved in a critical step required for the normal organization of prothylakoids and transition into mature thylakoid stacks. The AtTerC gene encodes an integral membrane protein, which contains eight putative transmembrane helices, localized in the thylakoid of the chloroplast, as shown by localization of an AtTerC–GFP fusion product in protoplasts and by immunoblot analysis of subfractions of chloroplasts. T-DNA insertional mutation of AtTerC resulted in a pigment-deficient and seedling-lethal phenotype under normal light conditions. Transmission electron microscopic analysis revealed that mutant etioplasts had normal prolamellar bodies (PLBs), although the prothylakoids had ring-like shapes surrounding the PLBs. In addition, the ultrastructures of mutant chloroplasts lacked thylakoids, did not have grana stacks, and showed numerous globular structures of varying sizes. Also, the accumulation of thylakoid membrane proteins was severely defective in this mutant. These results suggest that the AtTerC protein plays a crucial role in prothylakoid membrane biogenesis and thylakoid formation in early chloroplast development.  相似文献   

10.
The proteins of prolamellar bodies of etioplasts and of thylakoid membranes of greening and mature chloroplasts from Zea mays were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three classes of proteins were distinguished: those present in etioplasts and disappearing during greening, those absent in etioplasts and appearing during greening, and those present in both etioplasts and chloroplasts. The largest number of proteins belonged to this last class.The molecular weights of chloroplast thylakoid proteins were compared to the molecular weights of the membrane-associated proteins synthesized by isolated, mature chloroplasts. Thirteen of the 15 to 20 membrane-bound proteins made by isolated chloroplasts corresponded in size to proteins present in chloroplasts. Most of the 13 are present in both etioplasts and chloroplasts although a few were the same size as proteins which increase during greening. Production of most of the membrane proteins made in the plastids is not stringently regulated by light in vivo. The polypeptide subunits of the light-harvesting pigment-protein complex, the most abundant proteins of the chloroplast thylakoids, were absent from etioplasts. They were not synthesized by isolated chloroplasts.  相似文献   

11.
Etioplasts of 8-day-old, dark-grown seedlings of Phaseolus vulgaris contain large, crystalline prolamellar bodies. The basic structural unit within the prolamellar body is a six-pointed star (star module) with four tubules fusing at each of the nodes. With sufficient illumination some of the tubules are withdrawn and the crystalline prolamellar body transforms to a complex tangle of tubules, the reacted prolamellar body. In vivo spectrophotometry and electron microscopic observations were carried out on portions of the same leaves after varying periods of illumination with low light intensity. Protochlorophyllide transformation was normal. However, the structural changes are not closely tied to protochlorophyllide conversion. The pigment conversion is complete after 20 sec of illumination, but 80% of the prolamellar bodies are still in the crystalline form after 20 min of illumination. After 1 and 2 hr of illumination all prolamellar bodies are reacted. After 4 hr of continuous illumination 35%, and by 12 hr 60%, of the prolamellar bodies returned to the crystalline form. Spectrophotometric evidence and presence of grana show chlorophyll synthesis during this period. The coexistence of grana and the crystalline prolamellar body indicates that when insufficient photosynthetic membrane constituents are provided by the photo-reactions, under low light intensity, the membranes of the reacted prolamellar body will be forced to reform a crystalline prolamellar body.  相似文献   

12.
The ratio of free to thylakoid-bound chloroplast ribosomes in Chlamydomonas reinhardtii undergoes periodic changes during the synchronous light-dark cycle. In the light, when there is an increase in the chlorophyll content and synthesis of thylakoid membrane proteins, about 20-30% of the chloroplast ribosomes are bound to the thylakoid membranes. On the other hand, only a few or no bound ribosomes are present in the dark when there is no increase in the chlorophyll content. The ribosome-membrane interaction depends not only on the developmental stage of the cell but also on light. Thus, bound ribosomes were converted to the free variety after cultures at 4 h in the light had been transferred to the dark for 10 min. Conversely, a larger number of chloroplast ribosomes became attached to the membranes after cultures at 4 h in the dark had been illuminated for 10 min. Under normal conditions, when there was slow cooling of the cultures during cell harvesting, chloroplast polysomal runoff occurred in vivo leading to low levels of thylakoid-bound ribosomes. This polysomal runoff could be arrested by either rapid cooling of the cells or the addition of chloramphenicol or erythromycin. Each of these treatments prevented polypeptide chain elongation on chloroplast ribosomes and thus allowed the polyosomes to remain bound to the thylakoids. Addition of lincomycin, an inhibitor of chain initiation on 70S ribosomes, inhibited the assembly of polysome-thylakoid membrane complex in the light. These results support a model in which initiation of mRNA translation begins in the chloroplast stroma, and the polysome subsequently becomes attached to the thylakoid membrane. Upon natural chain termination, the chloroplast ribosomes are released from the membrane into the stroma.  相似文献   

13.
Semenova GA 《Tsitologiia》2005,47(6):510-518
An intrathylakoid electron opaque substance, further referred to as loculin, is found in 80-90 % of thylakoids of tansy leaf mesophyll chloroplasts at the stage of flower bud formation and flowering. Upon conventional isolation of chloroplasts in aqueous solution, and fixation in osmium solution alone, loculin is not retained in thylakoids. Preliminary fixation of leaves in glutaraldehyde makes it possible to isolate chloroplasts without injuring the envelope and stroma (glutar chloroplasts), and loculin is retained in thylakoids under these conditions. Upon prolonged incubation of glutar chloroplasts (for 24 h), loculin leaves thylakoids in the form of drops concentrating on the chloroplast envelope. Upon crossing the thylakoid membrane and chloroplast, loculin properties remain unchanged. It is assumed that loculin is an important metabolite necessary for active growth.  相似文献   

14.
Cells ofRhodopseudomonas spheroides were depigmented by aerobic growth in the light and then transferred to 4% oxygen in the dark to induce pigment synthesis. Pigment synthesis and photochemical activity were measured fluorometrically. In conjunction with the fluorescence studies, thylakoid morphogenesis was followed by electron microscopy of thin sections of cells fixed during the repigmentation process.Both bacteriochlorophyli and the onset of photochemical activity were detected before distinct thylakoids were observed. Subsequent bacteriochlorophyll synthesis was associated with a gradual increase in the thylakoid content throughout the developmental process.The results obtained strongly indicate that initially the cytoplasmic membrane is modified by pigment incorporation, possibly at specific sites, and that the bacteriochlorophyll is photochemically active in the pigmented cytoplasmic membrane or in the early stages of invagination.Finally, in a confirmation of previous hypotheses, these studies provide evidence for the origin of the thylakoids as a protrusion and invagination of the cytoplasmic membrane. This is followed by constriction and subsequent proliferation and branching to form a continuous membrane system which gives rise to chromatophores upon cellular disruption.Extracted in part from the doctoral thesis of G. A. Peters submitted to the University of Michigan in partial fulfillment of the requirements for the Ph.D. degree. For paper I of this series see reference [3].  相似文献   

15.
The effect of osmotic shock on the ultrastructure and functions of C-class pea chloroplasts has been examined. When incubated in a non-sucrose medium for 30 s or more, thylakoids were found to pass to a stable deformed state. This state was characterized by an altered orientation of thylakoids to each other with the lumen thickness remaining the same as in the normal state. Experiments with shorter incubation periods (10–20 s) revealed a swelling of thylakoids, which probably represented an intermediate stage. The deformation of the thylakoid system was accompanied by a decrease in the non-cyclic ATP synthesis but by an increase in the rate of cyclic photophosphorylation. Besides, the deformed thylakoids demonstrated an acceleration of the basal electron transport, as well a rise in the light-induced H+ and imidazol uptake. The data obtained are discussed in the light of membrane interactions fixing the configuration of a thylakoid.  相似文献   

16.
The light-harvesting complex of photosystem II (LHC II) contains one major (LHC IIb) and at least three minor chlorophyll-protein components. The apoproteins of LHC IIb (LHCP) are encoded by nuclear genes and synthesized in the cytoplasm as a higher molecular weight precursor(s) (pLHCP). Several genes coding for pLHCP have been cloned from various higher plant species. The expression of these genes is dependent upon a variety of factors such as light, the developmental stage of the plastids and the plant. After its synthesis in the cytoplasm, pLHCP is imported into plastids, inserted into thylakoids, processed to its mature form, and assembled into LHC IIb. The pathway of assembly of LHC IIb in the thylakoid membranes is currently being investigated in several laboratories. We present a model that gives some details of the steps in the assembly process. Many of the steps involved in the synthesis and assembly are dependent on light and the stage of plastid development.Abbreviations PS Photosystem - LHC II Light-harvesting complex of PS II - LHCP Apoproteins of LHC IIb - pLHCP Precursor of LHCP - PAGE Polyacrylamide gel electrophoresis  相似文献   

17.
The effect of chloramphenicol (CAP) on cell division and organelle ultrastructure was studied during light-induced chloroplast development in the Chrysophyte alga, Ochromonas danica. Since the growth rate of the CAP-treated cells is the same as that of the control cells for the first 12 hr in the light, CAP is presumed to be acting during that interval solely by inhibiting protein synthesis on chloroplast and mitochondrial ribosomes. CAP markedly inhibits chloroplast growth and differentiation. During the first 12 hr in the light, chlorophyll synthesis is inhibited by 93%, the formation of new thylakoid membranes is reduced by 91%, and the synthesis of chloroplast ribosomes is inhibited by 81%. Other chloroplast-associated abnormalities which occur during the first 12 hr and become more pronounced with extended CAP treatment are the presence of prolamellar bodies and of abnormal stacks of thylakoids, the proliferation of the perinuclear reticulum, and the accumulation of dense granular material between the chloroplast envelope and the chloroplast endoplasmic reticulum. CAP also causes a progressive loss of the mitochondrial cristae, which is paralleled by a decline in the growth rate of the cells, but it has no effect on the synthesis of mitochondrial ribosomes. We postulate that one or more chloroplast ribosomal proteins are synthesized on chloroplast ribosomes, whereas mitochondrial ribosomal proteins are synthesized on cytoplasmic ribosomes.  相似文献   

18.
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.

Lipid metabolism is fine-tuned to cellular metabolic demands during thylakoid membrane remodeling in response to long-term changes in light intensity.  相似文献   

19.
This review provides a brief historical account of how microscopical studies of chloroplasts have contributed to our current knowledge of the structural and functional organization of thylakoid membranes. It starts by tracing the origins of the terms plastid, grana, stroma and chloroplasts to light microscopic studies of 19th century German botanists, and then describes how different types of electron microscopical techniques have added to this field. The most notable contributions of thin section electron microscopy include the elucidation of the 3-D organization of thylakoid membranes, the discovery of prolamellar bodies in etioplasts, and the structural changes in thylakoid architecture that accompany the light-dependent transformation of etioplasts into chloroplasts. Attention is then focused on the roles that freeze-fracture and freeze-etch electron microscopy and immuno electron microscopy have played in defining the extent to which the functional complexes of thylakoids are non-randomly distributed between appressed, grana and non-appressed stroma thylakoids. Studies reporting on how this lateral differentiation can be altered experimentally, and how the spatial organization of functional complexes is affected by alterations in the light environment of plants are also included in this discussion. Finally, the review points to the possible uses of electron microscope tomography techniques in future structural studies of thylakoid membranes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Plastid development in the primary leaf of Echinochloa crus-galli (L.) Beauv. var. oryzicola (Vasing.) Ohwi was followed during 5 d of anoxic germination and growth. Plastids develop slowly from simple spheroidal proplastids into larger pleomorphic plastids with several stromal membranes and many peripheral membrane vesicles. A small prolamellar body is present at 96 h with perforated (pro)thylakoids extending into the stroma. Changes in starch grains and plastoglobuli are evidence of carbohydrate and lipid metabolism. Plastid division is indicated by dumbbell plastid profiles after 4 d of anoxia. These results demonstrate that plastids not only maintain their integrity during anaerobic germination but also show developmental changes involving an increase in internal membrane complexity, although to a lesser extent than in etiolated shoots.Abbreviation PLB prolamellar body Scientific paper No. 6167. College of Agriculture, Washington State University, Pullman  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号