首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of Lettuce mosaic virus to overcome the lettuce resistance conferred by the mo11 and mo12 alleles of the gene for eukaryotic translation initiation factor 4E (eIF4E) was analysed using reverse genetics. Mutations in the virus genome-linked protein (VPg) allowed mo11 only to be overcome, but mutations in the C-terminal portion of the cylindrical inclusion (CI) protein allowed both alleles to be overcome. Site-directed mutagenesis pinpointed a key role of the amino acid at position 621 in the virulence. This is the first example of the involvement of a potyviral CI protein in the breaking of an eIF4E-mediated resistance.  相似文献   

2.
3.
AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell-cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell-cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion.  相似文献   

4.
The intercellular and intracellular distribution of the movement protein (MP) of the Ob tobamovirus was examined in infected leaf tissues using an infectious clone of Ob in which the MP gene was translationally fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria. In leaves of Nicotiana tabacum and N. benthamiana, the modified virus caused fluorescent infection sites that were visible as expanding rings. Microscopy of epidermal cells revealed subcellular patterns of accumulation of the MP:GFP fusion protein which differed depending upon the radial position of the cells within the fluorescent ring. Punctate, highly localized fluorescence was associated with cell walls of all of the epidermal cells within the infection site, and apparently represents association of the fusion protein with plasmodesmata; furthermore, fluorescence was retained in cell walls purified from infected leaves. Within the brightest region of the fluorescent ring, the MP:GFP was observed in irregularly shaped inclusions in the cortical regions of infected cells. Fluorescent filamentous structures presumed to represent association of MP:GFP with microtubules were observed, but were distributed differently within the infection sites on the two hosts. Within cells containing filaments, a number of fluorescent bodies, some apparently streaming in cytoplasmic strands, were also observed. The significance of these observations is discussed in relation to MP accumulation, targeting to plasmodesmata, and degradation.  相似文献   

5.
While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread.  相似文献   

6.
7.
The initial stages of animal virus infection are generally described as the binding of free virions to permissive target cells followed by entry and replication. Although this route of infection is undoubtedly important, many viruses that are pathogenic for humans, including HIV-1, herpes simplex virus and measles, can also move between cells without diffusing through the extracellular environment. Cell-to-cell spread not only facilitates rapid viral dissemination, but may also promote immune evasion and influence disease. This Review discusses the various mechanisms by which viruses move directly between cells and the implications of this for viral dissemination and pathogenesis.  相似文献   

8.
The nuclear inclusion protein a (NIa) of turnip mosaic potyvirus is a protease responsible for processing the viral polyprotein into functional proteins. The NIa protease exhibits an unusual optimum proteolytic activity at about 16 degrees C. In order to understand the origin of the low-temperature optimum activity, the effects of temperature and salt ions on the catalytic activity and the structure of the NIa protease have been investigated. The analysis of the temperature dependence of k(cat) and K(m) revealed that K(m) decreases more drastically than k(cat) as temperature decreases. The thermodynamic analysis showed that the decrease of K(m) is driven entropically, suggesting a possibility that the substrate binding might need a large entropy cost. The secondary structure of the NIa protease was significantly perturbed at temperatures between 20 and 40 degrees C and the protease was unfolded at very low concentrations of guanidine hydrochloride with a transition midpoint of 0.8 M. These results suggest that the NIa protease is highly flexible in structure. Interestingly, salt ions including NaCl, KCl, CaCl(2) and MgCl(2) stimulated the proteolytic activity by 2-6-fold and increased the optimum temperature to 20-25 degrees C. This stimulatory effect of the salt ions was due to the lowering of K(m). The salt ions promoted the structural rigidity as evidenced in the higher resistance to the heat-induced unfolding in the presence of the salt ions. The increase in rigidity may lead to the lowering of K(m) possibly by reducing the entropic cost for substrate binding. Taken together, these results suggest that the NIa protease is highly flexible in structure and the low-temperature optimum activity might possibly be attributed to lowered entropy cost for substrate binding at lower temperatures.  相似文献   

9.
Expression of a potyvirus non-structural protein in transgenic tobacco   总被引:1,自引:0,他引:1  
A cDNA fragment encoding the cytoplasmic inclusion protein of tobacco vein mottling virus was inserted into the plant expression cassette of a Ti plasmid-based binary vector. The vector was transferred to Agrobacterium tumifaciens, and following a modified leaf disc procedure, transformed tobacco plants were obtained. Analysis of poly(A)+ RNA from transgenic plants revealed a novel RNA of approximately 2100 nucleotides possessing tobacco vein mottling virus sequences. Also, immunoprecipitation of protein extracts of [35S]methionine-labeled transformed callus using anti-cytoplasmic inclusion protein antiserum revealed a polypeptide of approximately 70 kDa. This size is consistent with that predicted from the inserted tobacco vein mottling virus coding sequences. Together these data demonstrate the expression of the cytoplasmic inclusion protein in the absence of viral infections.  相似文献   

10.
R Blasco  B Moss 《Journal of virology》1992,66(7):4170-4179
The roles of intracellular naked (INV), cell-associated enveloped (CEV), and extracellular enveloped (EEV) forms of vaccinia virus in cell-to-cell and longer-range spread were investigated by using two closely related strains of vaccinia virus, WR and IHD-J. We confirmed previous results that WR and IHD-J produced similar amounts of INV and formed similar-size primary plaques but that IHD-J produced 10 to 40 times more EEV and spread to distant cells much more efficiently than did WR. Nevertheless, cells infected with WR and IHD-J had similar amounts of CEV, indicating that wrapping and transport of WR virions were unimpaired. A WR mutant with a deletion in VP37, the major outer envelope protein, formed normal amounts of INV; however, the generation of CEV was blocked and plaque formation was inhibited. These results suggested that CEV is the form of virus that mediates cell-to-cell spread. Marker rescue experiments indicated that the differences in EEV production by WR and IHD-J were not due to sequence differences in VP37. The low amount of WR EEV could be attributed to retention of CEV on the cell membrane. In support of this hypothesis, mild treatment with trypsin released as much or more infectious virus from cells infected with WR as it did with cells infected with IHD-J. Most of the virus released by trypsin sedimented with the buoyant density of EEV. Also, addition of trypsin to cells following inoculation with WR led to a comet-shaped distribution of secondary plaques characteristic of IHD-J. These results demonstrated that the release of CEV from the cell surface was limiting for extracellular virus formation and affirmed the role of EEV in long-range spread.  相似文献   

11.
Homeostasis relies heavily on effective cell-to-cell communication. In the central nervous system (CNS), probably more so than in other organs, such communication is crucial to support and protect neurons especially during ageing, as well as to control inflammation, remove debris and infectious agents. Emerging evidence indicates that extracellular vesicles (EVs) including endosome-derived exosomes and fragments of the cellular plasma membrane play a key role in intercellular communication by transporting messenger RNA, microRNA (miRNA) and proteins. In neurodegenerative diseases, secreted vesicles not only remove misfolded proteins, but also transfer aggregated proteins and prions and are thus thought to perpetuate diseases by ‘infecting’ neighbouring cells with these pathogenic proteins. Conversely, in other CNS disorders signals from stressed cells may help control inflammation and inhibit degeneration. EVs may also reflect the status of the CNS and are present in the cerebrospinal fluid indicating that exosomes may act as biomarkers of disease. That extracellular RNA and in particular miRNA, can be transferred by EV also indicates that these vesicles could be used as carriers to specifically target the CNS to deliver immune modulatory drugs, neuroprotective agents and anti-cancer drugs. Here, we discuss the recent evidence indicating the potential role of exosomes in neurological disorders and how knowledge of their biology may enable a Trojan-horse approach to deliver drugs into the CNS and treat neurodegenerative and other disorders of the CNS.  相似文献   

12.
S. flexneri is an important human pathogen that causes bacillary dysentery. During infection, S. flexneri invades colonic epithelial cells, hijacks the host cell cytoskeleton to move in the cytosol of infected cells, and spreads from cell to cell through formation of membrane protrusions that project into adjacent cells and resolve into double membrane vacuoles (DMVs). S. flexneri cell-to-cell spread requires the integrity of the bacterial type three secretion system (T3SS). However, the exact role of the T3SS effector proteins in the dissemination process remains poorly understood. Here, we investigated the role of the T3SS effector protein IpgB1 in S. flexneri dissemination. IpgB1 was previously characterized as a guanine nucleotide exchange factor (GEF) that contributes to invasion. In addition to the invasion defect, we showed that the ipgB1 mutant formed smaller infection foci in HT-29 cells. Complementation of this phenotype required the GEF activity of IpgB1. Using live confocal microscopy, we showed that the ipgB1 mutant is specifically impaired in DMV escape. Depletion of Rac1, the host cell target of IpgB1 during invasion, as well as pharmacological inhibition of Rac1 signaling, reduced cell-to-cell spread and DMV escape. In a targeted siRNA screen, we uncovered that RhoA depletion restored ipgB1 cell-to-cell spread and DMV escape, revealing a critical role for the IpgB1-Rac1 axis in antagonizing RhoA-mediated restriction of DMV escape. Using an infant rabbit model of shigellosis, we showed that the ipgB1 mutant formed fewer and smaller infection foci in the colon of infected animals, which correlated with attenuated symptoms of disease, including epithelial fenestration and bloody diarrhea. Our results demonstrate that, in addition to its role during invasion, IpgB1 modulates Rho family small GTPase signaling to promote cell-to-cell spread, DMV escape, and S. flexneri pathogenesis.  相似文献   

13.
The turnip crinkle virus-based vector TCV-GFP Delta CP had been devised previously to study cell-to-cell and long-distance spread of virus-induced RNA silencing. TCV-GFP Delta CP, which had been constructed by replacing the coat protein (CP) gene with a green fluorescent protein (GFP) coding sequence, was able to induce RNA silencing in single epidermal cells, from which RNA silencing spread from cell-to-cell. Using this unique local silencing assay together with mutagenesis analysis, two TCV genes, p8 and p9, which were involved in the intercellular spread of virus-induced RNA silencing, were identified. TCV-GFP Delta CP and its p8- or p9-mutated derivatives, TCVmp8-GFP Delta CP and TCVmp9-GFP Delta CP, replicated efficiently but were restricted to single Nicotiana benthamiana epidermal cells. TCV-GFP Delta CP, TCVmp8-GFP Delta CP, or TCVmp9-GFP Delta CP was able to initiate RNA silencing that targeted and degraded recombinant viral RNAs in inoculated leaves of the GFP-expressing N. benthamiana line 16c. However, cell-to-cell spread of silencing to form silencing foci was triggered only by TCV-GFP Delta CP. Non-replicating TCVmp88-GFP Delta CP and TCVmp28mp88-GFP Delta CP with dysfunctional replicase genes, and single-stranded gfp RNA did not induce RNA silencing. Transient expression of the TCV p9 protein could effectively complement TCVmp9-GFP Delta CP to facilitate intercellular spread of silencing. These data suggest that the plant cellular trafficking machinery could hijack functional viral proteins to permit cell-to-cell movement of RNA silencing.  相似文献   

14.
Song JQ  Liu ML  Liu YX 《生理科学进展》2010,41(5):376-379
微囊泡(MV)作为新发现的细胞间信息传递途径正逐渐引起科学界的关注。它来源于细胞膜,含有与母细胞膜相似的脂类和蛋白质,也可能包括胞浆中的细胞器和部分mRNA。MV可以通过介导配体-受体反应或传递胞浆成分及细胞器等方式使母细胞与靶细胞发生联系,并参与了诸如动脉粥样硬化、糖尿病、心肌梗死、恶性肿瘤、关节炎等疾病的发生和发展。本文介绍近年关于微囊泡的研究进展,并重点阐述其在心血管疾病中的作用。  相似文献   

15.
In recent years, several parasites have been shown to interact with their hosts through intra- and inter-community communication mechanisms, which were identified to be mediated by extracellular vesicles (EVs) through various uptake mechanisms. EVs are a heterogenous group of nanoparticles (~30–5000 nm) classified into three main types according to their size and biogenesis. EVs contain proteins, lipids, nucleic acids and metabolites from the cell of origin which are essential for genetic exchange, biomarker identification and diagnosis of pathological diseases. As important “forward lines of parasite infectivity”, the parasite-secreted EVs function as information transmitters in the early-stage of host-parasite interaction and subsequent host-cell colonization. For this review, we summarize from the literature the relevance of EVs to the pathogenesis and development of human parasitic protistan diseases such as giardiasis, leishmaniasis, amoebiasis, malaria and Blastocystis-mediated gut pathology. Specific in vitro and in vivo interactions of the parasite-EVs and the host, with the reported cellular and immunological outcomes are discussed in this review. EVs have great potential to be further developed as diagnostic, immunomodulation and therapeutic alternatives to fill the knowledge gaps in the current parasitic diseases discussed in this review. Nanomedicine and vaccine development could be explored, with the utilization and/or modification of the parasitic EVs as novel treatment and prevention strategies.  相似文献   

16.
Li Q  Ali MA  Cohen JI 《Cell》2006,127(2):305-316
Varicella-zoster virus (VZV) causes chickenpox and shingles. While varicella is likely spread as cell-free virus to susceptible hosts, the virus is transmitted by cell-to-cell spread in the body and in vitro. Since VZV glycoprotein E (gE) is essential for virus infection, we postulated that gE binds to a cellular receptor. We found that insulin-degrading enzyme (IDE) interacts with gE through its extracellular domain. Downregulation of IDE by siRNA, or blocking of IDE with antibody, with soluble IDE protein extracted from liver, or with bacitracin inhibited VZV infection. Cell-to-cell spread of virus was also impaired by blocking IDE. Transfection of cell lines impaired for VZV infection with a plasmid expressing human IDE resulted in increased entry and enhanced infection with cell-free and cell-associated virus. These studies indicate that IDE is a cellular receptor for both cell-free and cell-associated VZV.  相似文献   

17.
The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar insertions in the gG locus of the wild-type PRV strain Becker had no effect on the ability of virus infection to spread between cells. Insertions in the gG locus of the virulent NIA-3 strain gave results similar to those found with the Bartha strain. To examine the role of gG in cell-to-cell spread, a nonsense mutation in the gG signal sequence was constructed and crossed into the Bartha strain. This mutant, PRV157, failed to express gG yet had cell-to-cell spread properties indistinguishable from those of the parental Bartha strain. These data indicated that, while insertions in the gG locus result in decreased cell-to-cell spread, the phenotype was not due to loss of gG expression as first predicted. Analysis of gene expression upstream and downstream of gG revealed that expression of the upstream Us3 protein is reduced by insertion of lacZ or egfp at the gG locus. By contrast, expression of the gene immediately downstream of gG, Us6, which encodes glycoprotein gD, was not affected by insertions in gG. These data indicate that DNA insertions in gG have polar effects and suggest that the serine/threonine kinase encoded by the Us3 gene, and not gG, functions in the spread of viral infection between cells.  相似文献   

18.
From the characterization of the recessive resistance gene, sbm1, in pea we have identified the eukaryotic translation initiation factor, eIF4E, as a susceptibility factor required for infection with the Potyvirus, Pea seed-borne mosaic virus. A functional analysis of the mode of action of the product of the dominant allele revealed a novel function for eIF4E in its support for virus movement from cell-to-cell, in addition to its probable support for viral RNA translation, and hence replication. Different resistance specificities in two independent pea lines were explained by different mutations in eIF4E. On the modelled structure of eIF4E the coding changes were in both cases lying in and around the structural pocket involved in binding the 5'-m7G cap of eukaryotic mRNAs. Protein expression and cap-binding analysis showed that eIF4E encoded by a resistant plant could not bind to m7G-Sepharose, a result which may point to functional redundancy between eIF4E and the paralogous eIF(iso)4E in resistant peas. These observations, together with related findings for other potyvirus recessive resistances, provide a more complete picture of the potyvirus life cycle.  相似文献   

19.
 We consider a two-dimensional model of cell-to-cell spread of HIV-1 in tissue cultures, assuming that infection is spread directly from infected cells to healthy cells and neglecting the effects of free virus. The intracellular incubation period is modeled by a gamma distribution and the model is a system of two differential equations with distributed delay, which includes the differential equations model with a discrete delay and the ordinary differential equations model as special cases. We study the stability in all three types of models. It is shown that the ODE model is globally stable while both delay models exhibit Hopf bifurcations by using the (average) delay as a bifurcation parameter. The results indicate that, differing from the cell-to-free virus spread models, the cell-to-cell spread models can produce infective oscillations in typical tissue culture parameter regimes and the latently infected cells are instrumental in sustaining the infection. Our delayed cell-to-cell models may be applicable to study other types of viral infections such as human T-cell leukaemia virus type 1 (HTLV-1). Received: 18 November 2000 / Published online: 28 February 2003 RID="*" ID="*" Research was partially supported by the NSERC and MITACS of Canada and a start-up fund from the College of Arts and Sciences at the University of Miami. On leave from Dalhousie University, Halifax, Nova Scotia, Canada. Current address: Department of Mathematics, Clarke College, Dubuque, Iowa 52001, USA Key words or phrases: HIV-1 – Cell-to-cell spread – Time delay – Stability – Hopf bifurcation – Periodicity  相似文献   

20.
Macrophages (MΦ) are increasingly recognized as HIV-1 target cells involved in the pathogenesis and persistence of infection. Paradoxically, in vitro infection assays suggest that virus isolates are mostly T-cell-tropic and rarely MΦ-tropic. The latter are assumed to emerge under CD4+ T-cell paucity in tissues such as the brain or at late stage when the CD4 T-cell count declines. However, assays to qualify HIV-1 tropism use cell-free viral particles and may not fully reflect the conditions of in vivo MΦ infection through cell-to-cell viral transfer. Here, we investigated the capacity of viruses expressing primary envelope glycoproteins (Envs) with CCR5 and/or CXCR4 usage from different stages of infection, including transmitted/founder Envs, to infect MΦ by a cell-free mode and through cell-to-cell transfer from infected CD4+ T cells. The results show that most viruses were unable to enter MΦ as cell-free particles, in agreement with the current view that non-M-tropic viruses inefficiently use CD4 and/or CCR5 or CXCR4 entry receptors on MΦ. In contrast, all viruses could be effectively cell-to-cell transferred to MΦ from infected CD4+ T cells. We further showed that viral transfer proceeded through Env-dependent cell-cell fusion of infected T cells with MΦ targets, leading to the formation of productively infected multinucleated giant cells. Compared to cell-free infection, infected T-cell/MΦ contacts showed enhanced interactions of R5 M- and non-M-tropic Envs with CD4 and CCR5, resulting in a reduced dependence on receptor expression levels on MΦ for viral entry. Altogether, our results show that virus cell-to-cell transfer overcomes the entry block of isolates initially defined as non-macrophage-tropic, indicating that HIV-1 has a more prevalent tropism for MΦ than initially suggested. This sheds light into the role of this route of virus cell-to-cell transfer to MΦ in CD4+ T cell rich tissues for HIV-1 transmission, dissemination and formation of tissue viral reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号