首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
SSCP and heteroduplex analysis (HA) continue to be the most popular methods of mutation detection due to their simplicity, high sensitivity and low cost. The advantages of these methods are most clearly visible when large genes, such as BRCA1 and BRCA2, are scanned for scattered unknown mutations and/or when a large number of DNA samples is screened for specific mutations. Here we describe a novel combined SSCP/duplex analysis adapted to the modern capillary electrophoresis (CE) system, which takes advantage of multicolor labeling of DNA fragments and laser-induced fluorescence detection. In developing this method, we first established the optimum conditions for homoduplex and heteroduplex analysis by CE. These were determined based on comprehensive analysis of representative Tamra-500 markers and BRCA1 fragments at different concentrations of sieving polymer and temperatures in the presence or absence of glycerol. The intrinsic features of DNA duplex structures are discussed in detail to explain differences in the migration rates between various types of duplexes. When combined SSCP/duplex analysis was carried out in single conditions, those found to be optimal for analysis of duplexes, all 31 BRCA1 and BRCA2 mutations, polymorphisms and variants tested were detected. It is worth noting that the panel of analyzed sequence variants was enriched in base substitutions, which are usually more difficult to detect. The sensitivity of mutation detection in the SSCP portion alone was 90%, and that in the duplex portion was 81% in the single conditions of electrophoresis. As is also shown here, the proposed combined SSCP/duplex analysis by CE has the potential of being applied to the analysis of pooled genomic DNA samples, and to multiplex analysis of amplicons from different gene fragments. These modifications may further reduce the costs of analysis, making the method attractive for large scale application in SNP scanning and screening.  相似文献   

2.
For mutation detection, various screening techniques are widely used because DNA sequencing, the gold-standard method, is still considered to be expensive and laborious for high-throughput screening. Single-strand conformation polymorphism (SSCP) analysis, heteroduplex analysis (HA) and their variant techniques are popular and frequently used for this purpose. It is widely accepted that when searching for unknown sequence variations, any revealed distinct pattern should always be sequenced. We give examples here of the BRCA1 and BRCA2 genes where the SSCP/HA techniques can produce ambiguous predictions if used to detect known genetic variants compared to positive controls. Using direct DNA sequencing, we provide evidence that in such cases, mutations or polymorphisms can mask each other's presence. This phenomenon can often influence the results of any DNA testing because genetic variations such as single-nucleotide polymorphisms occur frequently in the human genome. We suggest that even in the case of known electrophoretic patterns of well-characterized genetic alterations, every sequence alteration should be confirmed by direct DNA sequencing, especially if genetic testing is carried out for diagnostic purposes.  相似文献   

3.
Automation is essential for rapid genetic-based mutation analysis in clinical laboratory to screen a large number of DNA samples. We propose in this report an automatic process using Beckman Coulter P/ACE™ capillary electrophoresis (CE) with laser-induced fluorescence (LIF) system to detect a single-point mutation in the codon 12 of human K-ras gene. Polymerase chain reaction (PCR) using a fluorescently labeled reverse primer and a plain forward primer to specifically amplify a selected 50 bp DNA fragment in human K-ras gene. The amplified DNA is placed on the sample tray of the CE system with a pre-programmed step for single-strand conformation polymorphism (SSCP) analysis. Sample injection and denaturation processes are performed online along with separation and real-time data analysis. The concept of automation for rapid DNA mutation analysis using CE-LIF system for SSCP is presented.  相似文献   

4.
p53 immunostaining has been advocated as a marker of malignancy in pleural biopsies and serous fluids. The object of this study was to compare the sensitivity and specificity of p53 immunostaining for the detection of malignant cells in pleural fluids with a technique designed to detect p53 gene mutations in exons 5, 6, 7 and 8 by SSCP and nucleotide sequencing. Five out of eight pleural fluids containing adenocarcinoma showed p53 immunostaining and two of these also showed polymorphisms on SSCP and a mutation on sequencing. None of the 10 benign pleural fluids showed immunostaining for p53 or polymorphisms on SSCP. We believe that the poor sensitivity of p53 gene mutation by SSCP is mainly due to DNA from the background reactive cells 'swamping' the mutant DNA. We do not advocate its use as a diagnostic aid.  相似文献   

5.
Currently two mutations in the HFE gene are known to be associated with the manifestation of the autosomal recessive disorder hereditary hemochromatosis (HH). A single-base mutation resulting in Cys282Tyr appears to have a causative role in the development of the disease, and a point mutation resulting in His63Asp may also be involved. Recent observations with a fully automated capillary electrophoresis (CE) system (ABI Prism 310) suggested that this instrument could be used for the precise identification of known mutations based on single-strand conformation polymorphism (SSCP). Two DNA fragments, each specific for one of the HFE mutation sites and labeled with a different fluorophor, were coamplified and without further manipulation simultaneously analyzed by CE-SSCP. Wild-type samples showed a mobility pattern that was clearly distinguishable from homozygous Cys282Tyr, homozygous His63Asp, or a compound heterozygous sample. To evaluate the reliability of this system for the detection of both mutations, 20 samples were analyzed blind. All genotypes, which were called automatically, were in concordance with those obtained by a previously validated restriction fragment length polymorphism method. Thus, SSCP in combination with CE provides a fast and precise research tool for the simultaneous identification of the two common mutations implicated in HH. Received: 9 September 1998 / Accepted: 5 November 1998  相似文献   

6.
Moore L  Godfrey T  Eng C  Smith A  Ho R  Waldman FM 《BioTechniques》2000,28(5):986-992
We have developed a fluorescence-based single strand conformation polymorphism (SSCP) method that offers fast and sensitive screening for mutations in exons 5-8 of the human p53 gene. The method uses an ABI 377 DNA sequencer for unique color detection of each strand, plus accurate alignment of lanes for better detection of mobility shifts. To validate the method, 21 cell lines with reported mutations in p53 exons 5-8 were analyzed by SSCP using various gel conditions. The sensitivity for mutation detection was 95% for all cell lines studied, and no false positives were seen in 10 normal DNA samples for all four exons. Experiments mixing known amounts of tumor and normal DNA showed that mutations were detected even when tumor DNA was mixed with 80% normal DNA. Fluorescent SSCP analysis using the ABI sequencer is a useful tool in cancer research, where screening large numbers of samples for p53 mutations is desired.  相似文献   

7.
The use of capillary electrophoresis (CE) in a polymer network for single-strand conformation polymorphism (SSCP) is investigated. SSCP is a method to detect DNA point mutations, essential in the diagnosis of several diseases. The PCR (polymerase chain reaction) amplified p53 gene, a tumour suppressor gene known to be frequently mutated in malignant cells, was subjected to CE analysis. Two single-strand DNA fragments of 372 bp in length differing in only one nucleotide could be separated. We conclude that SSCP using CE in a polymer network is a powerful method for the detection of point mutations in DNA sequences.  相似文献   

8.
Mutation detection plays a great role in genetic and medical research and clinical diagnosis of inherited diseases and particular cancers. Single-strand conformation polymorphism (SSCP) analysis is one of the most popular methods for detection of mutations. Recently, automated capillary electrophoresis (CE) systems have been used in SSCP analysis instead of conventional slab gel electrophoresis. SSCP analysis in combination with CE is a rapid, simple, sensitive and high-throughput mutation screening tool, and has been successfully applied for mutation detection involving human tumor suppressor genes, oncogenes and disease-causing genes. The new technique has a great potential for mutation screening of large numbers of samples in clinical diagnosis. This review discusses basic issues about the methodology of SSCP analysis based on CE and summarizes several key applications.  相似文献   

9.
DNA analysis using capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection requires that polymerase chain reaction products either be prepared using primers with fluorescent molecules covalently bonded to them, or stained with a fluorescent intercalation dye following amplification. The intercalation technique has the advantage of allowing fluorescence detection of any double-stranded DNA (dsDNA) product regardless of the amplification primers used. The increased sensitivity of LIF detection is sometimes compromised by the intercalation dye changing the mass to charge ratio of the DNA. The purpose of this study was to evaluate the changes of migration rate, resolution and fluorescent intensity of dye–DNA complexes during electrophoretic separations, and to establish the optimal parameters for short tandem repeats alleles profiling. The alleles of three STR loci THO1, F13A01 and vWFA31 were intercalated with the monomeric dyes TOPRO-1 and YOPRO-1, and their corresponding dimers, TOTO-1 and YOYO-1 (Molecular Probes, Eugene, OR, USA). Alleles intercalated before injection onto the CE column resulted in loss of resolution and sensitivity when compared to the on-column labeling technique. The results of this experimentation were then applied to a STR typing assay using a commercially available polymer and buffer matrix. This assay included development of a unique internal standard used for migration time normalization assignment of alleles. Consequently, the 9 allele and the 9.3 microvariant of the THO1 locus were separated and typed correctly with a resolution of 0.49 in less than 20 min, and the only sample preparation necessary after amplification was a dilution step.  相似文献   

10.
11.
单链构象多态性毛细管电泳分析研究进展   总被引:1,自引:0,他引:1  
基因突变的检测在临床疾病诊断中起十分重要的作用.单链构象多态性(Single Strand Conform ationPolym orphism,SSCP)分析是检测突变最流行的方法之一.SSCP分析与毛细管电泳(Capillary Electrophoresis,CE)相结合的技术更是具有灵敏度高、花费低、简单、快速的优点.目前,这项技术已应用于人类原癌基因、抑癌基因以及其它致病基因的突变检测.主要综述了各种参数对CES-SCP分析的影响以及CES-SCP分析技术将来的发展方向.  相似文献   

12.
A specialized form of ion-pair reversed-phase high-performance liquid chromatography is gaining widespread application in mutation detection for single nucleotide polymorphisms (SNP). The technique relies on temperature-modulated heteroduplex analysis (TMHA) by chromatographic separation of partially denatured DNA heteroduplexes from homoduplexes. Here, we demonstrate that fluorescent labeling is compatible with mutation analysis by this form of DNA chromatography and offers advantages over the use of unlabeled DNA fragments. Uniform labeling of wild-type and mutant alleles for TMHA yields peak patterns identical to unlabeled fragments. However, fluorescent labels increase retention times but do not influence resolution of heteroduplexes from homoduplexes. They increase sensitivity and decrease the amount of DNA required for analysis; e.g., in the case presented here, one allele can be detected in the presence of a 500-fold excess of another allele. Furthermore, allele-specific wild-type probes, fluorescently labeled on one strand only, make it possible to selectively monitor specific homoduplexes and wild-type/mutant heteroduplexes. This, in combination with an internal homoduplex standard, greatly reduces the complexity of fluorescence chromatograms compared with chromatograms recorded in the UV. These simplified chromatograms, in which only the internal homoduplex standard and the labeled heteroduplex are detected in the presence of a mutation, greatly facilitate the detection and identification of mutant alleles.  相似文献   

13.
Analysis of a single strand conformation polymorphism (SSCP) using capillary electrophoresis (CE) is a novel method to study polymorphism of DNA sequences in large scale population studies. We optimized CE‐SSCP analysis to study the major histocompatibility complex (MHC) class II alpha gene (DQA) polymorphism. Short‐chain linear polyacrylamide (6%) as sieving matrix, TrisCl (pH 8.5) as buffer for sample dilution, and 27 °C, 9 kV as electrophoresis parameters were suitable for sufficient resolution of all alleles. We found that almost 25% of clones contained a PCR (polymerase chain reaction) artefact and strict criteria have to be applied when using cloning and sequencing to analyse the allelic diversity of MHC genes.  相似文献   

14.
We have analyzed previously three representative p53 single-point mutations by capillary-electrophoresis single-strand conformation polymorphism (CE-SSCP). In the current study, we compared our CE-SSCP results with the potential secondary structures predicted by an RNA/DNA-folding algorithm with DNA energy rules, used in conjunction with a computer analysis workbench called STRUCTURELAB. Each of these mutations produces measurable shifts in CE migration times relative to wild type. Using computerized folding analysis, each of the mutations was found to have a conformational difference relative to wild type, which accounts for the observed differences in CE migration. Additional properties exhibited in the CE electropherograms were also explained using the computerized analysis. These include the appearance of secondary peaks and the temperature dependence of the electrophoretic patterns. The results yield insight into the mechanism of SSCP and how the conditions of this measurement, especially temperature, may be optimized to improve the sensitivity of the SSCP method. The results may also impact other diagnostic methods, which would benefit by a better understanding of DNA single-strand conformation polymorphisms to optimize conditions for enzymatic cleavage and DNA hybridization reactions.  相似文献   

15.
This work compares the methods of mutation detection via denaturing high-performance liquid chromatography (dHPLC) and a microchip-based heteroduplex analysis (HA) method. The mutations analyzed were 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 with, as additional examples, 188del11 and 5396 + 1G --> A in BRCA1. Our HA method is based upon the use of a replaceable, highly denaturing sieving matrix that has dynamic coating capabilities, rendering our method relatively insensitive to contamination. We have found significant advantages in the microchip analysis in terms of reagent consumption, ease of use, versatility, simplicity of the protocol, the lack of constraints upon sample preparation or content, and the lack of parameters that need be adjusted. Although HA methods have a lower sensitivity than that of dHPLC, the electropherograms of the present HA method appear to provide more information and may allow mutations within the same amplicon to be distinguished. Although the dHPLC method has a remarkably high sensitivity, with this sensitivity there come constraints that may prevent it, in its present form, from being used in some applications, particularly those involving higher levels of integration. The advantages of the present HA method, along with recent developments in microchip-based single-nucleotide polymorphism (SNP) detection and high-throughput arrays, suggest that microchip-based systems could provide compact and integrated platforms capable of large-scale genotyping or mutational screening.  相似文献   

16.
Peptide mapping by capillary electrophoresis (CE) with UV detection is problematic for the characterization of proteins that can only be obtained at low micromolar concentrations. Dilution of peptide fragments during digestion of the protein can further reduce the detection sensitivity in peptide mapping to the point where analysis at sub-micromolar concentrations is not possible. A remedy to this problem is preconcentration (sample enrichment) of the proteolytic digest by solid-phase extraction (SPE). To minimize non-specific adsorptive losses during sample handling, on-line SPE–CE is preferred. However, packed-inlet SPE–CE is not always feasible due to either instrument or sample limitations. We describe here a simple method of preconcentration by discontinuous on-line SPE–CE, specifically applied to peptide mapping in low-pH separation buffer after protein digestion in a solid-phase enzyme microreactor. The SPE–CE system does not require application of a low pressure during electrophoretic separation to overcome reversed electroosmotic flow because the preconcentrator device is disconnected from the separation capillary before the electric field is applied. Up to a 500-fold preconcentration factor can be achieved with this device, which can be reused for many samples. Parameters such as the volume of desorption solution, the adsorption/desorption (chromatographic) process, reproducibility of packing the SPE preconcentrator and effects of sample concentration on the peptide map are investigated.  相似文献   

17.
The detection of low-abundant DNA point mutations is very important for the early prediction of cancer, diagnostics of disease and clinical prognosis. In this paper, an on-chip oligonucleotide ligation approach that arrayed a series of functionalized beads in a single microfluidic channel was described for detection of low-abundant point mutations in p53 gene. This gene carried the point mutation with high diagnostic value for assessment of tumor progression and resectional borders. This work extended our prior efforts using one-dimensional (1-D) microfluidic beads array for protein and nucleic acid molecular profiling, and displayed high discrimination sensitivity to mutations detection due to the enhanced mass transport capability caused by microfluidic addressing format of beads array. As a demonstration, it was found that the on-chip beads ligation held high mutation discrimination sensitivity in 1 pM quantities at a SNR (signal-to-noise ratio) >2 using synthesized DNA oligonucleotides in accordance with target fragment. The RT-PCR products of tumor cell line A549, CNE2 and SKBr-3 were further examined to distinguish the point mutation at codon 175 of p53 gene. This approach was capable of detecting a point mutation in a p53 oncogene at a level of 1 mutant in 1000 wild-type sequences using PCR products without the need of LDR amplification. Additionally, this on-chip beads ligation approach also displayed other microfluidic-based advantages of simple handling (one sample injection per test), little reagent quantities, and low potential of contaminations.  相似文献   

18.
Capillary electrophoresis (CE) with a sieving buffer containing ethidium bromide was applied to the detection of PCR-amplified RFLP samples. With CE, in contrast to agarose gel electrophoresis, run times are short, i.e., typically less than 30 min, the capillary can be re-used, and full automation is feasible. The addition of ethidium bromide to the buffer system in conjunction with a field amplification injection technique led to increased sample detectability and resolution. Migration time precision was better than 0.2% RSD with a approximately 12-bp resolution for the DNA fragment sizes of interest. RFLP samples were analyzed for homo- or heterozygosity based on the presence of 500- and/or 520-bp DNA fragments. Special software was used to correct for run-to-run migration time variations, thus facilitating genotype assignment.  相似文献   

19.
乳腺癌的p53免疫组织化学和PCR-SSCP研究   总被引:2,自引:0,他引:2  
为了明确p53突变与乳腺癌临床特征的关系,研究了50例浸润性乳腺导管癌中p53免疫组织化学检测与临床指标肿瘤大小、淋巴结转移情况及病人年龄的关系,并探讨p53免疫组织化学结果与PCR-SSCP检测结果的关系及意义.发现p53免疫组织化学检测阳性与肿瘤大小及淋巴结转移关系密切(P<0.05);1例p53免疫组织化学检测阳性病例PCR-SSCP检测为杂合突变,1例p53免疫组织化学检测阴性病例为PCR-SSCP检测p53纯合缺失.我们的结果提示免疫组织化学检测阳性并不一定有p53突变,而阴性则可能有p53基因缺失,临床上结合两种检测可提供更准确的p53状况的参考资料.  相似文献   

20.
Based on EST sequences, fragments of 37 genes have been amplified and sequenced in two inbred lines of sugar beet. The rate of single nucleotide polymorphisms (SNP) corresponded to 1 every 130 bp, with an average (nucleotide diversity) value of 7.6×10–3. When extrapolated to the whole sugar beet genome, randomly compared lines differ at 5.4×106 SNPs in the genetic pool considered. In a wider search for SNP-related polymorphisms, 96 fragments of expressed genes were scanned with SSCP (single-strand conformation polymorphism) and heteroduplex (HA) analyses in 8 inbred lines. One SSCP or HA polymorphism was found every 1,470 bp of amplified DNA, corresponding to 5×105 SSCP or HA loci in the whole genome. This frequency, 11 times lower than the SNP rate, was attributed to the high frequency of base pair substitution along the amplified fragment analysed electrophoretically. Therefore nucleotide variability was further studied by sequencing fragments of 10 genes in the same 8 lines. The results indicate that sugar beet alleles of expressed genes are very frequently organized as robust intragene haplotypes. In the 8 lines analysed, two haplotypes were identified for each of three gene fragments, three haplotypes for six gene fragments and four haplotypes for one gene fragment which is in good correspondence with the number of alleles detected by SSCP and HA analysis. In a cross between two lines, SSCP or HA alleles of expressed genes have 54% probability to be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号