首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mitogen-activated protein (MAP) kinases are essential signaling molecules that mediate many cellular effects of growth factors, cytokines, and stress stimuli. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Down-regulation of MAP kinase activity can be initiated by multiple serine/threonine phosphatases, tyrosine-specific phosphatases, and dual specificity phosphatases (MAP kinase phosphatases). This would inevitably lead to the formation of monophosphorylated MAP kinases. However, the biological functions of these monophosphorylated MAP kinases are currently not clear. In this study, we have prepared MAP kinase p38alpha, a member of the MAP kinase family, in all phosphorylated forms and characterized their biochemical properties. Our results indicated the following: (i) p38alpha phosphorylated at both Thr-180 and Tyr-182 was 10-20-fold more active than p38alpha phosphorylated at Thr-180 only, whereas p38alpha phosphorylated at Tyr-182 alone was inactive; (ii) the dual-specific MKP5, the tyrosine-specific hematopoietic protein-tyrosine phosphatase, and the serine/threonine-specific PP2Calpha are all highly specific for the dephosphorylation of p38alpha, and the dephosphorylation rates were significantly affected by different phosphorylated states of p38alpha; (iii) the N-terminal domain of MPK5 has no effect on enzyme catalysis, whereas deletion of the MAP kinase-binding domain in MKP5 leads to a 370-fold decrease in k(cat)/K(m) for the dephosphorylation of p38alpha. This study has thus revealed the quantitative contributions of phosphorylation of Thr, Tyr, or both to the activation of p38alpha and to the substrate specificity for various phosphatases.  相似文献   

3.
Dual specificity protein phosphatase 26 (DUSP26) is overexpressed in high-risk neuroblastoma (NB) and contributes to chemoresistance by inhibiting p53 function. In vitro, DUSP26 has also been shown to effectively inhibit p38 MAP kinase. We hypothesize that inhibiting DUSP26 will result in decreased NB cell growth in a p53 and/or p38-mediated manner. NSC-87877 (8-hydroxy-7-[(6-sulfo-2-naphthyl)azo]-5-quinolinesulfonic acid), a novel DUSP26 small molecule inhibitor, shows effective growth inhibition and induction of apoptosis in NB cell lines. NB cell lines treated with small hairpin RNA (shRNA) targeting DUSP26 also exhibit a proliferation defect both in vitro and in vivo. Treatment of NB cell lines with NSC-87877 results in increased p53 phosphorylation (Ser37 and Ser46) and activation, increased activation of downstream p38 effector proteins (heat shock protein 27 (HSP27) and MAP kinase-activated protein kinase 2 (MAPKAPK2)) and poly ADP ribose polymerase/caspase-3 cleavage. The cytotoxicity resulting from DUSP26 inhibition is partially reversed by knocking down p53 expression with shRNA and also by inhibiting p38 activity with SB203580 (4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine). In an intrarenal mouse model of NB, NSC-87877 treatment results in decreased tumor growth and increased p53 and p38 activity. Together, these results suggest that DUSP26 inhibition with NSC-87877 is an effective strategy to induce NB cell cytotoxicity in vitro and in vivo through activation of the p53 and p38 mitogen-activated protein kinase (MAPK) tumor-suppressor pathways.Neuroblastoma (NB) remains the most common extracranial solid tumor in children and is associated with a very poor prognosis in high-risk patients.1 Current treatment strategy for this subgroup of patients includes intense myeloablative chemotherapy, radical surgical resection of primary tumor, radiation therapy and stem cell rescue. In spite of these therapies, survival in high-risk NB patients is <50% at 5 years from diagnosis.2 These therapies confer major long-term toxicities in over 90% of long-term survivors; therefore, efforts are underway to identify more specific biologic therapies with less toxicity and better efficacy at targeting NB.A therapeutic strategy that is gaining much interest is utilizing small molecule inhibitors to activate innate, non-mutated cell senescence and death pathways, such as the p53 tumor suppressor. Mutations in the p53 gene are seen in over 60% of adult cancers; however, pediatric solid tumors, particularly NB, do not exhibit frequent p53 mutations and actually have an intact pathway that is suppressed by other mechanisms.3 Mouse double minute 2 (MDM2) inhibition is a strategy to activate p53 using compounds such as Nutlin-3a, RITA and RG7112, which has already been tested in a phase I clinical trial in adults.4, 5, 6 The p38 stress kinase, MAP kinase, pathway is another tumor-suppressive pathway that is upstream from p53 and can function through p53-dependent and -independent mechanisms to induce apoptosis. Although described as oncogenic in some cancers, there is evidence that p38 activation leads to tumor cell apoptosis in NB.7, 8, 9, 10 Both of these tumor-suppressive pathways are regulated through phosphorylation and dephosphorylation events by an array of kinases and phosphatases.Phosphatase targeting in NB has had very limited application because of the limited number of phosphatases found to have an oncogenic role. Protein phosphatase 2A (PP2A), protein tyrosine phosphatase receptor delta (PTPRD) and dual specificity protein phosphatase 12 (DUSP12) have been found to be involved in NB cell differentiation and tumor suppression.11, 12, 13, 14 First discovered in breast cancer, PPM1D, or Wip-1 phosphatase, is active in NB, and small molecule inhibition results in p53 activation and chemosensitivity.15, 16, 17 In this report, we show DUSP26 functions by inhibiting p53 and p38 function to promote growth of NB tumor cells.DUSP26 (MKP-8, LDP-4) was originally described as a dual specifity phosphatase with enzymatic activity against p38 MAP kinase resulting in dephosphorlyation of the primary p38 activation sites, Thr180/Tyr182.18, 19 Song et al.20 showed that NSC-87877 (8-hydroxy-7-[(6-sulfo-2-naphthyl)azo]-5-quinolinesulfonic acid), a small molecule phosphatase inhibitor of SHP-1 (src homology region 2 domain-containing phosphatase), specifically inhibits DUSP26 phosphatase activity at a much lower IC50 than other phosphatases resulting in increased p38 phosphorylation in vitro. Yu et al.21 have shown that DUSP26 is overexpressed in anaplastic thyroid cancer tissue samples and functions by inhibiting the p38 MAP kinase pathway.A novel DUSP26 function shown in NB is enzymatic regulation of the p53 tumor suppressor.22 We demonstrated that DUSP26 physically binds p53, dephosphorylates p53 at Ser20 and Ser37, and causes inhibition of downstream p53 signaling. DUSP26 activity leads to increased chemoresistance to doxorubicin and VP-16 (etoposide) treatment, and overexpression was seen in high-risk NB tumor tissue samples correlating with a worse prognosis in these patients. Here, we show how DUSP26 has pro-proliferative effects in NB by inhibiting the p53 tumor-suppressor pathway, as well as the p38 mitogen-activated protein kinase (MAPK) pathway. Inhibition with small hairpin RNA (shRNA) targeting DUSP26 or NSC-87877 results in decreased proliferation and cell viability in NB cell lines in vitro and in vivo. Inhibiting the p53 or p38 pathways reverses this phenotype seen with inhibition of DUSP26. These data establish DUSP26 inhibition as a promising novel therapeutic approach for NB.  相似文献   

4.
The MAPK family members p38, JNK, and ERK are all activated downstream of innate immunity's TLR to induce the production of cytokines and inflammatory mediators. However, the relative intensity and duration of the activation of different MAPK appears to determine the type of immune response. The mammalian genome encodes a large number of dual specificity phosphatases (DUSP), many of which act as MAPK phosphatases. In this study, we review the emergence of several DUSP as genes that are differentially expressed and regulated in immune cells. Recently, a series of investigations in mice deficient in DUSP1, DUSP2, or DUSP10 revealed specificity in the regulation of the different MAPK proteins, and defined essential roles in models of local and systemic inflammation. The DUSP family is proposed as a set of molecular control devices specifying and modulating MAPK signaling, which may be targeted to unleash or attenuate innate and adaptive immune effector functions.  相似文献   

5.
DUSP5 is an inducible, nuclear, dual-specificity phosphatase, which specifically interacts with and inactivates the ERK1/2 MAP kinases in mammalian cells. In addition, expression of DUSP5 causes nuclear translocation of ERK2 indicating that it may act as a nuclear anchor for the inactive kinase. Here we show that induction of DUSP5 mRNA and protein in response to growth factors is dependent on ERK1/2 activation and that the accumulation of DUSP5 protein is regulated by rapid proteasomal degradation. DUSP5 is phosphorylated by ERK1/2 both in vitro and in vivo on three sites (Thr321, Ser346 and Ser376) within its C-terminal domain. DUSP5 phosphorylation is absolutely dependent on the conserved kinase interaction motif (KIM) within the amino-terminal domain of DUSP5, indicating that the same protein–protein contacts are required for both the inactivation of ERK2 by DUSP5 and for DUSP5 to act as a substrate for this MAPK. Using a combination of pharmacological inhibitors and phospho-site mutants we can find no evidence that phosphorylation of DUSP5 by ERK2 significantly affects either the half-life of the DUSP5 protein or its ability to bind to, inactivate or anchor ERK2 in the nucleus. However, co-expression of ERK2 results in significant stabilisation of DUSP5, which is accompanied by reduced levels of DUSP5 ubiquitination. These changes are independent of ERK2 kinase activity but absolutely depend on the ability of ERK2 to bind to DUSP5. We conclude that DUSP5 is stabilised by complex formation with its physiological substrate and that this may reinforce its activity as both a phosphatase and nuclear anchor for ERK2.  相似文献   

6.
7.
ABSTRACT: Phosphatases are important regulators of intracellular signaling events, and their functions have been implicated in many biological processes. Dual-specificity phosphatases (DUSPs), whose family currently contains 25 members, are phosphatases that can dephosphorylate both tyrosine and serine/threonine residues of their substrates. The archetypical DUSP, DUSP1/MKP1, was initially discovered to regulate the activities of MAP kinases by dephosphorylating the TXY motif in the kinase domain. However, although DUSPs were discovered more than a decade ago, only in the past few years have their various functions begun to be described. DUSPs can be categorized based on the presence or absence of a MAP kinase-interacting domain into typical DUSPs and atypical DUSPs, respectively. In this review, we discuss the current understanding of how the activities of typical DUSPs are regulated and how typical DUSPs can regulate the functions of their targets. We also summarize recent findings from several in vivo DUSP-deficient mouse models that studied the involvement of DUSPs during the development and functioning of T cells. Finally, we discuss briefly the potential roles of DUSPs in the regulation of non-MAP kinase targets, as well as in the modulation of tumorigenesis.  相似文献   

8.
9.
Although many stimuli activate extracellular signal-regulated kinases 1 and 2 (ERK1/2), the kinetics and compartmentalization of ERK1/2 signals are stimulus-dependent and dictate physiological consequences. ERKs can be inactivated by dual specificity phosphatases (DUSPs), notably the MAPK phosphatases (MKPs) and atypical DUSPs, that can both dephosphorylate and scaffold ERK1/2. Using a cell imaging model (based on knockdown of endogenous ERKs and add-back of wild-type or mutated ERK2-GFP reporters), we explored possible effects of DUSPs on responses to transient or sustained ERK2 activators (epidermal growth factor and phorbol 12,13-dibutyrate, respectively). For both stimuli, a D319N mutation (which impairs DUSP binding) increased ERK2 activity and reduced nuclear accumulation. These stimuli also increased mRNA levels for eight DUSPs. In a short inhibitory RNA screen, 12 of 16 DUSPs influenced ERK2 responses. These effects were evident among nuclear inducible MKP, cytoplasmic ERK MKP, JNK/p38 MKP, and atypical DUSP subtypes and, with the exception of the nuclear inducible MKPs, were paralleled by corresponding changes in Egr-1 luciferase activation. Simultaneous removal of all JNK/p38 MKPs or nuclear inducible MKPs revealed them as positive and negative regulators of ERK2 signaling, respectively. The effects of JNK/p38 MKP short inhibitory RNAs were not dependent on protein neosynthesis but were reversed in the presence of JNK and p38 kinase inhibitors, indicating DUSP-mediated cross-talk between MAPK pathways. Overall, our data reveal that a large number of DUSPs influence ERK2 signaling. Together with the known tissue-specific expression of DUSPs and the importance of ERK1/2 in cell regulation, our data support the potential value of DUSPs as targets for drug therapy.  相似文献   

10.
Dual-specificity phosphatases (DUSPs) dephosphorylate threonine/serine and tyrosine residues on their substrates. Here we show that DUSP1, DUSP4, and DUSP6 are involved in epithelial-to-mesenchymal transition (EMT) and breast cancer stem cell (CSC) regulation. DUSP1, DUSP4, and DUSP6 are induced during EMT in a PKC pathway signal-mediated EMT model. We show for the first time that the key chromatin-associated kinase PKC-θ directly regulates a subset of DUSP family members. DUSP1, DUSP4, and DUSP6 globally but differentially co-exist with enhancer and permissive active histone post-translational modifications, suggesting that they play distinct roles in gene regulation in EMT/CSCs. We show that nuclear DUSP4 associates with the key acetyltransferase p300 in the context of the chromatin template and dynamically regulates the interplay between two key phosphorylation marks: the 1834 (active) and 89 (inhibitory) residues central to p300’s acetyltransferase activity. Furthermore, knockdown with small-interfering RNAs (siRNAs) shows that DUSP4 is required for maintaining H3K27ac, a mark mediated by p300. DUSP1, DUSP4, and DUSP6 knockdown with siRNAs shows that they participate in the formation of CD44hi/CD24lo/EpCAM+ breast CSCs: DUSP1 knockdown reduces CSC formation, while DUSP4 and DUSP6 knockdown enhance CSC formation. Moreover, DUSP6 is overexpressed in patient-derived HER2+ breast carcinomas compared to benign mammary tissue. Taken together, these findings illustrate novel pleiotropic roles for DUSP family members in EMT and CSC regulation in breast cancer.  相似文献   

11.
12.
13.
MAP kinase phosphatases (MKPs) are important regulators of the activation levels and kinetics of MAP kinases. This is crucial for a large number of physiological processes during development and growth, as well as interactions with the environment, including the response to ultraviolet-B (UV-B) stress. Arabidopsis MKP1 is a key regulator of MAP kinases MPK3 and MPK6 in response to UV-B stress. However, virtually nothing is presently known about the post-translational regulation of plant MKPs in vivo. Here, we provide evidence that MKP1 is a phosphoprotein in vivo and that MKP1 accumulates in response to UV-B stress. Moreover, proteasome inhibitor experiments suggest that MKP1 is constantly turned-over under non-stress conditions and that MKP1 is stabilized upon stress treatment. Stress-responsive phosphorylation and stabilization of MKP1 demonstrate the post-translational regulation of a plant MKP in vivo, adding an additional regulatory layer to MAP kinase signaling in plants.  相似文献   

14.
Mitogen-activated protein kinases (MAPKs) fulfill essential biological functions and are key pharmaceutical targets. Regulation of MAPKs is achieved via a plethora of regulatory proteins including activating MAPKKs and an abundance of deactivating phosphatases. Although all regulatory proteins use an identical interaction site on MAPKs, the common docking and hydrophobic pocket, they use distinct kinase interaction motif (KIM or D-motif) sequences that are present in linear, peptide-like, or well folded protein domains. It has been recently shown that a KIM-containing MAPK-specific dual specificity phosphatase DUSP10 uses a unique binding mode to interact with p38α. Here we describe the interaction of the MAPK binding domain of DUSP16 with p38α and show that despite belonging to the same dual specificity phosphatase (DUSP) family, its interaction mode differs from that of DUSP10. Indeed, the DUSP16 MAPK binding domain uses an additional helix, α-helix 4, to further engage p38α. This leads to an additional interaction surface on p38α. Together, these structural and energetic differences in p38α engagement highlight the fine-tuning necessary to achieve MAPK specificity and regulation among multiple regulatory proteins.  相似文献   

15.
The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38‐alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain.  相似文献   

16.
This study aimed to explore the role of dual specificity phosphatase 12 (DUSP12) in regulating myocardial ischemia–reperfusion (I/R) injury and the underlying mechanism. The expression of DUSP12 in myocardial tissues and heat-shock protein beta-8 (HSPB8) and mitophagy-related proteins in myocardial tissues and H9c2 cells were detected by western blot analysis. The serum creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH), levels of reactive oxygen species and malondialdehyde, superoxide dismutase activity in myocardial tissues and H9c2 cells, and caspase-3 activity in H9c2 cells were analyzed by corresponding assay kits. The infarct area in the rat's heart was observed by triphenyl tetrazolium chloride staining. The apoptosis of myocardial cells in myocardial tissues and H9c2 cells was detected by terminal-deoxynucleotidyl transferase dUTP-biotin nick-end labeling assay. The interaction between DUSP12 and HSPB8 was clarified by the coimmunoprecipitation assay. The transfection efficacy of si-HSPB8#1 and si-HSPB8#2 in H9c2 cells was confirmed by real-time quantitative-polymerase chain reaction and western blot analysis. As a result, DUSP12 expression was downregulated in I/R rats, which was promoted by lentivirus-expressing DUSP12. DUSP12 overexpression reduced the serum creatine kinase isoenzymes (CK-MB) and LDH, decreased the infarct area in the rat's heart, and suppressed the apoptosis and oxidative stress in myocardial tissues. DUSP12 overexpression also upregulated the expression of HSPB8 to promote mitophagy. The coimmunoprecipitation assay indicated that DUSP12 could be combined with HSPB8. In addition, DUSP12 overexpression could inhibit hypoxia/reoxygenation-elicited apoptosis as well as oxidative stress in H9c2 cells by upregulating HSPB8 expression to promote mitophagy, which was countervailed by HSPB8 deficiency. In conclusion, DUSP12 overexpression decreased the apoptosis and oxidative stress in myocardial I/R injury through HSPB8-induced mitophagy.  相似文献   

17.
18.
A novel human dual-specific protein phosphatase (DSP), designated DUSP27, is here described. The DUSP27 gene contains three exons, rather than the predicted 4-14 exons, and encodes a 220 amino acid protein. DUSP27 is structurally similar to other small DSPs, like VHR and DUSP13. The location of DUSP27 on chromosome 10q22, 50 kb upstream of DUSP13, suggests that these two genes arose by gene duplication. DUSP27 is an active enzyme, and its kinetic parameters and were determined. DUSP27 is a cytosolic enzyme, expressed in skeletal muscle, liver and adipose tissue, suggesting its possible role in energy metabolism.  相似文献   

19.
20.
Mitogen-activated protein (MAP) kinases play a central role in controlling a wide range of cellular functions following their activation by a variety of extracellular stimuli. MAP kinase phosphatases (MKPs) represent a subfamily of dual specificity phosphatases, which negatively regulate MAP kinases. Although ERK2 activity is regulated by its phosphorylation state, MKP3 is regulated by physical interaction with ERK2, independent of its enzymatic activity (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S., (1998) Science 280, 1262-1265; Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., and Zhou, M. M. (2001), Mol. Cell 7, 387-399; Zhou, B., and Zhang, Z. Y. (1999) J. Biol. Chem. 274, 35526-35534). The interaction of ERK2 and MKP3 allows the reciprocal cross-regulation of their catalytic activity. Indeed, MKP3 acts as a negative regulator on ERK2-MAP kinase signal transduction activity, representing thus a negative feedback for this MAPK pathway. To identify novel proteins able to complex MKP3, we used the yeast two-hybrid system. Here we report that MKP3 and protein kinase CK2 form a protein complex, which can include ERK2. The phosphatase activity of MKP3 is then slightly increased in vitro, whereas in transfected cells, ERK2 dephosphorylation is reduced. In addition, we demonstrated that CK2 selectively phosphorylates MKP3, suggesting cross-regulation between CK2alpha and MKP3, as well as a modulation of ERK2-MAPK signaling by CK2alpha via MKP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号