首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Death receptors trigger apoptosis by activating the apical cysteine proteases caspase-8 and -10 within a death-inducing signaling complex (DISC). c-FLIP (cellular FLICE inhibitory protein) is an enzymatically inactive relative of caspase-8 and -10 that binds to the DISC. Two major c-FLIP variants result from alternative mRNA splicing: a short, 26-kDa protein (c-FLIP(S)) and a long, 55-kDa form (c-FLIP(L)). The role of c-FLIP(S) as an inhibitor of death receptor-mediated apoptosis is well established; however, the function of c-FLIP(L) remains controversial. Although overexpression of transfected c-FLIP(L) inhibits apoptosis, ectopic expression at lower levels supports caspase-8 activation and cell death. Simultaneous ablation of both c-FLIP variants augments death receptor-mediated apoptosis, but the impact of selective depletion of c-FLIP(L) on caspase-8 activation and subsequent apoptosis is not well defined. To investigate this, we developed small interfering RNAs that specifically knock down expression of c-FLIP(L) in several cancer cell lines and studied their effect on apoptosis initiation by Apo2L/TRAIL (Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand). Knockdown of c-FLIP(L) augmented DISC recruitment, activation, processing, and release of caspase-8, thereby enhancing effector-caspase stimulation and apoptosis. Thus, endogenous c-FLIP(L) functions primarily as an inhibitor of death receptor-mediated apoptosis.  相似文献   

2.
3.
4.
Apoptotic cell suicide initiated by ligation of CD95 (Fas/APO-1) occurs through recruitment, oligomerization and autocatalytic activation of the cysteine protease, caspase-8 (MACH, FLICE, Mch5). An endogenous mammalian regulator of this process, named Usurpin, has been identified (aliases for Usurpin include CASH, Casper, CLARP, FLAME-1, FLIP, I-FLICE and MRIT). This protein is ubiquitously expressed and exists as at least three isoforms arising by alternative mRNA splicing. The Usurpin gene is comprised of 13 exons and is clustered within approximately 200 Kb with the caspase-8 and -10 genes on human chromosome 2q33-34. The Usurpin polypeptide has features in common with pro-caspase-8 and -10, including tandem 'death effector domains' on the N-terminus of a large subunit/small subunit caspase-like domain, but it lacks key residues that are necessary for caspase proteolytic activity, including the His and Cys which form the catalytic substrates diad, and residues that stabilize the P1 aspartic acid in substrates. Retro-mutation of these residues to functional caspase counterparts failed to restore proteolytic activity, indicating that other determinants also ensure the absence of catalytic potential. Usurpin heterodimerized with pro-caspase-8 in vitro and precluded pro-caspase-8 recruitment by the FADD/MORT1 adapter protein. Cell death induced by CD95 (Fas/APO-1) ligation was attenuated in cells transfected with Usurpin. In vivo, a Usurpin deficit was found in cardiac infarcts where TUNEL-positive myocytes and active caspase-3 expression were prominent following ischemia/reperfusion injury. In contrast, abundant Usurpin expression (and a caspase-3 deficit) occurred in surrounding unaffected cardiac tissue, suggesting reciprocal regulation of these pro- and anti-apoptotic molecules in vivo. Usurpin thus appears to be an endogenous modulator of apoptosis sensitivity in mammalian cells, including the susceptibility of cardiac myocytes to apoptotic death following ischemia/ reperfusion injury.  相似文献   

5.
6.
Bid, a BH3-only Bcl-2 protein, is activated by proteolytic cleavage exposing the BH3 domain, which then induces apoptosis by interacting with pro-apoptotic Bcl-2 family proteins (e.g. Bax and Bak) at the mitochondrial surface. The arrangement of domains within Bid suggested that Bid function might be regulated in part by alternative splicing. We have determined the gene structure of human Bid and identified a number of novel exons. We have also demonstrated endogenous mRNA and protein expression for three novel isoforms of Bid, generated using these exons. Bid(S) contains the N-terminal regulatory domains of Bid without the BH3 domain; Bid(EL) corresponds to full-length Bid with additional N-terminal sequence; and Bid(ES) contains only the Bid sequence downstream of the BH3 domain. Expression of these isoforms is regulated during granulocyte maturation. In functional studies Bid(EL) induces apoptosis, whereas Bid(S) abrogates the pro-apoptotic effects of truncated Bid and inhibits Fas-mediated apoptosis. Bid(ES) induces apoptosis but is also able to partially inhibit the pro-apoptotic effects of truncated Bid. These three novel endogenously expressed isoforms of Bid are distinct in their expression, their cellular localization, and their effects upon cellular apoptosis. Differential expression of these novel Bid isoforms may regulate the function of Bid following cleavage and thus influence the fate of cells exposed to a range of pro-apoptotic stimuli.  相似文献   

7.
8.
Follicular selection is performed in mammalian ovaries, as most follicles undergo atresia during follicular development and growth. Follicular regression is indicated to begin with granulosa cell apoptosis. To reveal the molecular mechanisms of the selection, we examined the changes in the levels of cellular-Flice like inhibitory protein (cFLIP) expression in porcine granulosa cells. cFLIP is the homologue of intracellular apoptosis inducer (procaspase-8/Flice), and has two alternative splicing isoforms: cFLIP short form (cFLIP(S)) and long form (cFLIP(L)). By competing with caspase-8, cFLIP inhibits apoptosis initiated by death receptors. The changes in the levels of cFLIP(S) and cFLIP(L) mRNA and protein expression in granulosa cells were determined by RT-PCR and Western blotting, respectively. cFLIP(L) mRNA and protein were highly expressed in granulosa cells of healthy follicles and decreased during atresia. cFLIP(S) mRNA levels in granulosa cells were low and showed no change among the stages of follicular development, and its protein level was extremely low. We examined the changes in the localization of cFLIP mRNAs in pig ovaries by in situ hybridization and found that cFLIP(L) is abundant in granulosa cells of healthy follicles in comparison with those of atretic follicles. Immunohistochemical analyses demonstrated that the cFLIP protein is highly expressed in the granulosa cell of healthy follicles but weakly expressed in that of atretic follicles. We presumed that cFLIP, especially cFLIP(L), plays an anti-apoptotic role in the granulosa cells of healthy follicles of pig ovaries, and that cFLIP could be a major survival factor that determines whether growth or atresia occurs in porcine follicles.  相似文献   

9.
Glucocorticoids (GC) act as potent anti-inflammatory and immunosuppressive agents on a variety of immune cells. However, the exact mechanisms of their action are still unknown. Recently, we demonstrated that GC induce apoptosis in human peripheral blood monocytes. In the present study, we examined the signaling pathway in GC-induced apoptosis. Monocyte apoptosis was demonstrated by annexin V staining, DNA laddering, and electron microscopy. Apoptosis required the activation of caspases, as different caspase inhibitors prevented GC-induced cell death. In addition, the proteolytic activation of caspase-8 and caspase-3 was observed. In additional experiments, we determined the role of the death receptor CD95 in GC-induced apoptosis. CD95 and CD95 ligand (CD95L) were up-regulated in a dose- and time-dependent manner on the cell membrane and also released after treatment with GC. Costimulation with the GC receptor antagonist mifepristone diminished monocyte apoptosis as well as CD95/CD95L expression and subsequent caspase-8 and caspase-3 activation. In contrast, the caspase inhibitor N:-acetyl-Asp-Glu-Val-Asp-aldehyde suppressed caspase-3 activation and apoptosis, but did not down-regulate caspase-8 activation and expression of CD95 and CD95L. Importantly, GC-induced monocyte apoptosis was strongly abolished by a neutralizing CD95L mAb. Therefore, our data suggest that GC-induced monocyte apoptosis is at least partially mediated by an autocrine or paracrine pathway involving the CD95/CD95L system.  相似文献   

10.
11.
12.
13.
14.
Alternative splicing of ryanodine receptor subtype 3 (RYR3) may generate a short isoform (RYR3S) without channel function and a functional full-length isoform (RYR3L). The RYR3S isoform has been shown to negatively regulate the native RYR2 subtype in smooth muscle cells as well as the RYR3L isoform when both isoforms were coexpressed in HEK-293 cells. Mouse myometrium expresses only the RYR3 subtype, but the role of RYR3 isoforms obtained by alternative splicing and their activation by cADP-ribose during pregnancy have never been investigated. Here, we show that both RYR3S and RYR3L isoforms are differentially expressed in nonpregnant and pregnant mouse myometrium. The use of antisense oligonucleotides directed against each isoform indicated that only RYR3L was activated by caffeine and cADP-ribose in nonpregnant myometrium. These RYR3L-mediated Ca2+ releases were negatively regulated by RYR3S expression. At the end of pregnancy, the relative expression of RYR3L versus RYR3S and its ability to respond to cADP-ribose were increased. Therefore, our results suggest that physiological regulation of RYR3 alternative splicing may play an essential role at the end of pregnancy. ryanodine receptor; smooth muscle; alternative splicing  相似文献   

15.
We have been using the caspase-2 pre-mRNA as a model system to study the importance of alternative splicing in the regulation of programmed cell death. Inclusion or skipping of a cassette-type exon in the 3' portion of this pre-mRNA leads to the production of isoforms with antagonistic activity in apoptosis. We previously identified a negative regulatory element (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element harbors a decoy 3' acceptor site that engages in nonproductive commitment complex interactions with the 5' splice site of exon 9. This in turn confers a competitive advantage to the exon-skipping splicing pattern. Further characterization of the In100 element reveals a second, functionally distinct, domain located downstream from the decoy 3' acceptor site. This downstream domain harbors several polypyrimidine track-binding protein (PTB)-binding sites. We show that PTB binding to these sites correlates with the negative effect on exon 9 inclusion. Finally, we show that both domains of the In100 element can function independently to repress exon 9 inclusion, although PTB binding in the vicinity of the decoy 3' splice site can modulate its activity. Our results thus reveal a complex composite element that regulates caspase-2 exon 9 alternative splicing through a novel mechanism.  相似文献   

16.
王炜  来茂德 《遗传》2006,28(2):226-230
    胰岛素受体基因第11号外显子因为变异性剪接而形成两种胰岛素受体,两者与配体胰岛素、胰岛素样生长因子的结合力以及分别诱导的信号传导通路、发挥的生物学效应存在显著差异。这种差异不仅可能是导致胰岛素抵抗、2型糖尿病的重要原因,也会影响肿瘤细胞的生长、增殖、抗凋亡。虽然具体的调节机制尚不明确,但高胰岛素血症及高血糖等代谢因素是影响胰岛素受体变异性剪接的重要原因,同时基因序列敲除试验证实,胰岛素受体基因水平的改变会影响胰岛素受体的变异性剪接。        相似文献   

17.
CrkRS is a Cdc2-related protein kinase that contains an arginine- and serine-rich (SR) domain, a characteristic of the SR protein family of splicing factors, and is proposed to be involved in RNA processing. However, whether it acts together with a cyclin and at which steps it may function to regulate RNA processing are not clear. Here, we report that CrkRS interacts with cyclin L1 and cyclin L2, and thus rename it as the long form of cyclin-dependent kinase 12 (CDK12(L)). A shorter isoform of CDK12, CDK12(S), that differs from CDK12(L) only at the carboxyl end, was also identified. Both isoforms associate with cyclin L1 through interactions mediated by the kinase domain and the cyclin domain, suggesting a bona fide CDK/cyclin partnership. Furthermore, CDK12 isoforms alter the splicing pattern of an E1a minigene, and the effect is potentiated by the cyclin domain of cyclin L1. When expression of CDK12 isoforms is perturbed by small interfering RNAs, a reversal of the splicing choices is observed. The activity of CDK12 on splicing is counteracted by SF2/ASF and SC35, but not by SRp40, SRp55, and SRp75. Together, our findings indicate that CDK12 and cyclin L1/L2 are cyclin-dependent kinase and cyclin partners and regulate alternative splicing.  相似文献   

18.
19.
20.
越来越多的证据指出前体mRNA选择性剪切的调节在癌症病理生理学上的重要性.在非小细胞肺癌(NSCLC)的发生及发展中caspase-9 mRNA的选择性剪切发挥着重要作用,caspase-9的2个剪切异构体caspase-9a和caspase-9b的比值与NSCLC肿瘤的发生和维持密切相关,并且调节该比值关系会影响到NSCLC细胞对于抗癌治疗的敏感性.因此,caspase-9的选择性剪切是目前NSCLC治疗和诊断最受关注的焦点.本文就caspase-9的选择性剪切及其在NSCLC治疗中的应用展开综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号