首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored the influence of small-scale spatial variation in soil moisture on CO2 fluxes in the high Arctic. Of five sites forming a hydrological gradient, CO2 was emitted from the three driest sites and only the wettest site was a net sink of CO2. Soil moisture was a good predictor of net ecosystem exchange (NEE). Higher gross ecosystem photosynthesis (GEP) was linked to higher bryophyte biomass and activity in response to the moisture conditions. Ecosystem respiration (R e) rates increased with soil moisture until the soil became anaerobic and then R e decreased. At well-drained sites R e was driven by GEP, suggesting substrate and moisture limitation of soil respiration. We propose that spatial variability in soil moisture is a primary driver of NEE.  相似文献   

2.
Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Ålesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species-specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance.  相似文献   

3.
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.  相似文献   

4.
Variability and future alterations in regional and global climate patterns may exert a strong control on the carbon dioxide (CO2) exchange of grassland ecosystems. We used 6 years of eddy-covariance measurements to evaluate the impacts of seasonal and inter-annual variations in environmental conditions on the net ecosystem CO2 exchange (NEE), gross ecosystem production (GEP), and ecosystem respiration (ER) of an intensively managed grassland in the humid temperate climate of southern Ireland. In all the years of the study period, considerable uptake of atmospheric CO2 occurred in this grassland with a narrow range in the annual NEE from −245 to −284 g C m−2 y−1, with the exception of 2008 in which the NEE reached −352 g C m−2 y−1. None of the measured environmental variables (air temperature (Ta), soil moisture, photosynthetically active radiation, vapor pressure deficit (VPD), precipitation (PPT), and so on) correlated with NEE on a seasonal or annual scale because of the equal responses from the component fluxes GEP and ER to variances in these variables. Pronounced reduction of summer PPT in two out of the six studied years correlated with decreases in both GEP and ER, but not with NEE. Thus, the stable annual NEE was primarily achieved through a strong coupling of ER and GEP on seasonal and annual scales. Limited inter-annual variations in Ta (±0.5°C) and generally sufficient soil moisture availability may have further favored a stable annual NEE. Monthly ecosystem carbon use efficiency (CUE; as the ratio of NEE:GEP) during the main growing season (April 1–September 30) was negatively correlated with temperature and VPD, but positively correlated with soil moisture, whereas the annual CUE correlated negatively with annual NEE. Thus, although drier and warmer summers may mildly reduce the uptake potential, the annual uptake of atmospheric CO2, in this intensively managed grassland, may be expected to continue even under predicted future climatic changes in the humid temperate climate region.  相似文献   

5.
Fluxes of CO2 during the snow-covered season contribute to annual carbon budgets, but our understanding of the mechanisms controlling the seasonal pattern and magnitude of carbon emissions in seasonally snow-covered areas is still developing. In a subalpine meadow on Niwot Ridge, Colorado, soil CO2 fluxes were quantified with the gradient method through the snowpack in winter 2006 and 2007 and with chamber measurements during summer 2007. The CO2 fluxes of 0.71 μmol m−2 s−1 in 2006 and 0.86 μmol m−2 s−1 in 2007 are among the highest reported for snow-covered ecosystems in the literature. These fluxes resulted in 156 and 189 g C m−2 emitted over the winter, ~30% of the annual soil CO2 efflux at this site. In general, the CO2 flux increased during the winter as soil moisture increased. A conceptual model was developed with distinct snow cover zones to describe this as well as the three other reported temporal patterns in CO2 flux from seasonally snow-covered soils. As snow depth and duration increase, the factor controlling the CO2 flux shifts from freeze–thaw cycles (zone I) to soil temperature (zone II) to soil moisture (zone III) to carbon availability (zone IV). The temporal pattern in CO2 flux in each zone changes from periodic pulses of CO2 during thaw events (zone I), to CO2 fluxes reaching a minimum when soil temperatures are lowest in mid-winter (zone II), to CO2 fluxes increasing gradually as soil moisture increases (zone III), to CO2 fluxes decreasing as available carbon is consumed. This model predicts that interannual variability in snow cover or directional shifts in climate may result in dramatically different seasonal patterns of CO2 flux from seasonally snow-covered soils.  相似文献   

6.

Background and aim

Because the indigenous burrowing lagomorph plateau pika (Ochotona curzoniae) is considered to have negative ecological impacts on alpine meadow steppe grasslands of the Headwaters Region of the Yellow, Yangtze and Mekong Rivers we investigated its effects on ecosystem productivity and soil properties, and especially net ecosystem carbon flux.

Methods

We measured net ecosystem CO2 exchange (NEE) and its components gross ecosystem productivity (GEP) and ecosystem respiration (ER) at peak aboveground biomass by the chamber method with reference to plant and soil characteristics of areas of alpine meadow steppe with different densities of pika burrows.

Results

Higher burrow density decreased NEE, GEP and ER. Above-ground biomass, species number, plant cover and leaf area index decreased with increasing pika density. Higher burrow density was associated with lower soil moisture and higher soil temperature. Responses of NEE were related to changes of abiotic and biotic factors affecting its two components. NEE was positively related to soil moisture, soil ammonium nitrogen, plant cover, leaf area index and above-ground biomass but was negatively correlated with higher soil nitrate nitrogen.

Conclusion

Decrease of NEE by plateau pika may reduce the carbon sink balance of Qinghai-Tibet plateau grassland. Such effects may be influenced by grazing pressure from domestic livestock, population levels of natural predators, and climate change.  相似文献   

7.

Background

Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.

Methodology/Principal Findings

In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.

Conclusion/Significance

Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.  相似文献   

8.
Our understanding of the controls and magnitudes of regional CO2 exchanges in the Arctic are limited by uncertainties due to spatial heterogeneity in vegetation across the landscape and temporal variation in environmental conditions through the seasons. We measured daytime net ecosystem CO2 exchange and each of its component fluxes in the three major tundra ecosystem-types that typically occur along natural moisture gradients in the Canadian Low Arctic biweekly during the full snow-free season of 2004. In addition, we used a plant-removal treatment to compare the contribution of bulk soil organic matter to total respiratory CO2 loss among these ecosystems. Net CO2 exchange rates varied strongly, but not consistently, among ecosystems in the spring and summer phases as a result of ecosystem-specific and differing responses of gross photosynthesis and respiration to temporal variation in environmental conditions. Overall, net carbon gain was largest in the wet sedge ecosystem and smallest in the dry heath. Our measures of CO2 flux variation within each ecosystem were frequently most closely correlated with air or soil temperatures during each seasonal phase. Nevertheless, a particularly large rainfall event in early August rapidly decreased respiration rates and stimulated gross photosynthetic rates, resulting in peak rates of net carbon gain in all ecosystems. Finally, the bulk soil carbon contribution to total respiration was relatively high in the birch hummock ecosystem. Together, these results demonstrate that the relative influences of moisture and temperature as primary controls on daytime net ecosystem CO2 exchange and its component fluxes differ in fundamental ways between the landscape and ecosystem scales. Furthermore, they strongly suggest that carbon cycling responses to environmental change are likely to be highly ecosystem-specific, and thus to vary substantially across the low arctic landscape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Expansion of deciduous shrubs is a common observation throughout the Arctic, with implications for carbon (C) cycling. Shrubs may increase net ecosystem C uptake through greater leaf area and gross ecosystem photosynthesis (GEP), and/or through cooler summer soils and reduced ecosystem respiration (ER). We used a space-for-time substitution combined with experimental warming at a Low Arctic site in West Greenland to examine the biophysical effects of increased temperature and Betula nana abundance on ecosystem CO2 exchange. Communities dominated by Betula were much stronger C sinks than graminoid communities due to greater GEP and lower ER. The warming treatment had little effect on GEP, ER, or net ecosystem CO2 exchange (NEE). The start of the growing season has been advancing at our study site, as indicated by long-term observations of plant phenology. In a retrospective analysis, we estimate that earlier onset of the growing season has increased the strength of the ecosystem C sink at rates of 1.3 and 2.1 g C m?2 y?1 in Betula and graminoid tundra, respectively, since 2002. However, earlier, and presumably longer, growing seasons may be associated with greater potential for drought stress. Our data suggest that mid-summer drought-induced GEP declines may partially offset C gains associated with an earlier start to the growing season. Our results suggest greater deciduous shrub abundance and longer growing seasons will likely lead to greater net C uptake in our study area, while highlighting important complexities associated with drought and plant community composition.  相似文献   

10.
This study reports the annual carbon balance of a drained riparian fen under two‐cut or three‐cut managements of festulolium and tall fescue. CO2 fluxes measured with closed chambers were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling according to environmental factors (light and temperature) and canopy reflectance (ratio vegetation index, RVI). Methodological assessments were made of (i) GPP models with or without temperature functions (Ft) to adjust GPP constraints imposed by low temperature (<10 °C) and (ii) ER models with RVI or GPP parameters as biomass proxies. The sensitivity of the models was also tested on partial datasets including only alternate measurement campaigns and on datasets only from the crop growing period. Use of Ft in GPP models effectively corrected GPP overestimation in cold periods, and this approach was used throughout. Annual fluxes obtained with ER models including RVI or GPP parameters were similar, and also annual GPP and ER fluxes obtained with full and partial datasets were similar. Annual CO2 fluxes and biomass yield were not significantly different in the crop/management combinations although the individual collars (n = 12) showed some variations in GPP (?1818 to ?2409 g CO2‐C m?2), ER (1071 to 1738 g CO2‐C m?2), net ecosystem exchange (NEE, ?669 to ?949 g CO2‐C m?2) and biomass yield (556 to 1044 g CO2‐C m?2). Net ecosystem carbon balance (NECB), as the sum of NEE and biomass carbon export, was only slightly negative to positive in all crop/management combinations. NECBs, interpreted as emission factors, tended to favour the least biomass producing systems as the best management options in relation to climate saving carbon balances. Yet, considering the down‐stream advantages of biomass for fossil fuel replacement, yield‐scaled carbon fluxes are suggested to be given additional considerations for comparison of management options in terms of atmospheric impact.  相似文献   

11.
Forest soils are an important component of CO2 and CH4 fluxes at the global scale, but the magnitude of these fluxes varies greatly in space and time within a landscape. Understanding the spatial and temporal distributions of these fluxes across complex landscapes remains a major challenge for researchers and land managers alike. We investigated the spatiotemporal variability of soil-atmosphere CO2 and CH4 fluxes and the relationships of these fluxes to chemical and physical soil properties distributed across a topographically-heterogeneous landscape. Soil CO2 and CH4 fluxes were measured along with soil temperature, moisture, bulk density, texture, carbon, sorption capacity, and dissolved organic matter quality over 2 years along hillslope transects spanning valley bottom, transition zone, and upland landscape positions in a temperate forest watershed. Transition zone soil CO2 efflux was 54–160% higher than low-lying valley bottoms, and 15–54% higher than uplands. Net seasonal CH4 uptake was 58–150% higher in transition zone soils than in uplands, while valley bottoms were occasionally large net sources (up to 19 nmol CH4 m?2 s?1). Soil CO2 efflux and net CH4 uptake were both positively associated with seasonal temperature, and were highest in soils with relatively high carbon and clay content, and relatively low bulk density, moisture, and sorption capacity. We concluded that: (1) transition zone soils act as landscape hotspots for net CH4 uptake in addition to CO2 efflux, and (2) that this spatial distribution is more consistent across seasons for net CH4 uptake than for CO2 efflux.  相似文献   

12.
We present a new soil respiration model, describe a formal model testing procedure, and compare our model with five alternative models using an extensive data set of observed soil respiration. Gas flux data from rangeland soils that included a large number of measurements at low temperatures were used to model soil CO2 emissions as a function of soil temperature and water content. Our arctangent temperature function predicts that Q10 values vary inversely with temperature and that CO2 fluxes are significant below 0 °C. Independent data representing a broad range of ecosystems and temperature values were used for model testing. The effects of plant phenology, differences in substrate availability among sites, and water limitation were accounted for so that the temperature equations could be fairly evaluated. Four of the six tested models did equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94) and was superior to published variable Q10 equations using the Akaike information criterion (AIC). The arctangent temperature equation explained 16–85% of the observed intra-site variability in CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone only in the dryland soils. The observed change in Q10 with increasing temperature was the same for data sets that included only heterotrophic respiration and data sets that included both heterotrophic and autotrophic respiration.  相似文献   

13.
Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m-2 for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.  相似文献   

14.
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long‐term, multi‐level and multi‐factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m?2) were applied and the higher level was combined with supplemental summer rain. We made plot‐level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ13C and NDVI to examine responses to our treatments at ecosystem‐ and leaf‐levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2‐C budgets. Low‐level warming increased the magnitude of the ecosystem C sink. Meanwhile, high‐level warming made the ecosystem a source of C to the atmosphere. When high‐level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low‐level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf‐level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf‐level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.  相似文献   

15.
In situ manipulations were conducted in a naturally drained lake on the arctic coastal plain near Prudhoe Bay, Alaska (70 °21.98′ N, 148 °33.72′ W) to assess the potential short-term effects of decreased water table and elevated temperature on net ecosystem CO2 flux. The experiments were conducted over a 2-year period, and during that time, water table depth of drained plots was maintained on average 7 cm lower than the ambient water table, and surface temperatures of plots exposed to elevated temperature were increased on average 0.5 °C. Water table drainage, and to a lesser extent elevated temperature, resulted in significant increases in ecosystem respiration (ER) rates, and only small and variable changes in gross ecosystem productivity (GEP). As a result, drained plots were net sources of ≈ 40 gC m–2 season–1 over both years of manipulation, while control plots were net sinks of atmospheric CO2 of about 10 gC m–2 season–1 (growing season length was an estimated 125 days). Control plots exposed to elevated temperatures accumulated slightly more carbon than control plots exposed to ambient temperatures. The direct effects of elevated temperature on net CO2 flux, ER, and GEP were small, however, elevated temperature appeared to interact with drainage to exacerbate the amount of net carbon loss. These data suggest that many currently saturated or nearly saturated wet sedge ecosystems of the north slope of Alaska may become significant sources of CO2 to the atmosphere if climate change predictions of increased evapotranspiration and reduced soil water status are realized. There is ample evidence that this may be already occurring in arctic Alaska, as a change in net carbon balance has been observed for both tussock and wet-sedge tundra ecosystems over the last 2–3 decades, which coincides with a recent increase in surface temperature and an associated decrease in soil water content. In contrast, if precipitation increases relatively more than evapotranspiration, then increases in soil moisture content will likely result in greater carbon accumulation.  相似文献   

16.
Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.  相似文献   

17.
There is considerable interest in how ecosystems will respond to changes in precipitation. Alterations in rain and snowfall are expected to influence the spatio-temporal patterns of plant and soil processes that are controlled by soil moisture, and potentially, the amount of carbon (C) exchanged between the atmosphere and ecosystems. Because grasslands cover over one third of the terrestrial landscape, understanding controls on grassland C processes will be important to forecast how changes in precipitation regimes will influence the global C cycle. In this study we examined how irrigation affects carbon dioxide (CO2) fluxes in five widely variable grasslands of Yellowstone National Park during a year of approximately average growing season precipitation. We irrigated plots every 2 weeks with 25% of the monthly 30-year average of precipitation resulting in plots receiving approximately 150% of the usual growing season water in the form of rain and supplemented irrigation. Ecosystem CO2 fluxes were measured with a closed chamber-system once a month from May-September on irrigated and unirrigated plots in each grassland. Soil moisture was closely associated with CO2 fluxes and shoot biomass, and was between 1.6% and 11.5% higher at the irrigated plots (values from wettest to driest grassland) during times of measurements. When examining the effect of irrigation throughout the growing season (May–September) across sites, we found that water additions increased ecosystem CO2 fluxes at the two driest and the wettest sites, suggesting that these sites were water-limited during the climatically average precipitation conditions of the 2005 growing season. In contrast, no consistent responses to irrigation were detected at the two sites with intermediate soil moisture. Thus, the ecosystem CO2 fluxes at those sites were not water-limited, when considering their responses to supplemental water throughout the whole season. In contrast, when we explored how the effect of irrigation varied temporally, we found that irrigation increased ecosystem CO2 fluxes at all the sites late in the growing season (September). The spatial differences in the response of ecosystem CO2 fluxes to irrigation likely can be explained by site specific differences in soil and vegetation properties. The temporal effects likely were due to delayed plant senescence that promoted plant and soil activity later into the year. Our results suggest that in Yellowstone National Park, above-normal amounts of soil moisture will only stimulate CO2 fluxes across a portion of the ecosystem. Thus, depending on the topographic location, grassland CO2 fluxes can be water-limited or not. Such information is important to accurately predict how changes in precipitation/soil moisture will affect CO2 dynamics and how they may feed back to the global C cycle.  相似文献   

18.
This paper estimates CO2 emission and net ecosystem exchange (NEE) between the atmosphere and the surface of bog in the south taiga of the European part of Russia for the summer periods of 2013–2015. Flux measurements are carried out by the static chamber method every 7–10 days in three experimental sites with homogenous conditions of soil moisture and vegetation type. Statistically significant differences in CO2 fluxes and NEE are found between different experimental sites. It is shown that an assessment of the significance of bogs in CO2 balance with the atmosphere must be made with consideration for the spatial heterogeneity of bogs.  相似文献   

19.
增温对青藏高原高寒草原生态系统碳交换的影响   总被引:1,自引:0,他引:1  
碳交换是影响草地生态系统碳汇功能的关键过程,对气候变暖极为敏感。青藏高原分布着大面积的高寒草原,其碳汇功能对气候变暖的响应对区域碳循环过程具有重要的影响。为探究高寒草原生态系统碳交换过程对增温的响应,2012—2014年,在青藏高原班戈县进行了模拟增温对高寒草原生态系统碳交换过程影响的研究。结果表明,增温对高寒草原碳交换各组分的影响存在年际差异,但总体上对碳交换存在负面影响。3年平均结果显示,增温显著降低了高寒草原地上生物量、总生态系统生产力(GEP)、生态系统呼吸(ER)和净生态系统碳交换量(NEE)(P0.05),平均降幅分别为15.1%、36.8%、19.2%和51.5%。增温条件下3年平均土壤呼吸(SR)较对照无显著变化(P0.05),但2013年增温显著降低了SR(P0.05),降幅达18.1%。增温对SR与ER的比值具有一定的促进作用,最高增幅达到40.0%。GEP、ER、SR和NEE与土壤温度和土壤水分无显著相关(P0.05),而GEP、ER和NEE与空气温度呈显著的负相关关系(P0.05)。增温引起的干旱胁迫以及地上生物量降低是导致高寒草原NEE降低的主要原因。研究表明,全球变暖会一定程度降低青藏高原高寒草原的碳汇功能。  相似文献   

20.
We examined the temperature response of CO2 exchange and soil biogeochemical processes in an Antarctic tundra ecosystem using laboratory incubations of intact tundra cores. The cores were collected from tundra near Anvers Island along the west coast of the Antarctic Peninsula that was dominated by the vascular plants Colobanthus quitensis and Deschampsia antarctica. After the initial 8-week incubation at moderate growth temperatures (12/7°C, day/night), the tundra cores were incubated for another 8 weeks at either a higher (17/12°C) or lower (7/4°C) temperature regime. Temperature responses of CO2 exchange were measured at five temperatures (4, 7, 12, 17, and 27°C) following each incubation and soil leachates were collected biweekly over the second incubation. Daytime net ecosystem CO2 exchange (NEE) per unit core surface area was higher across the five measurement temperatures after the warmer incubation (17/12°C > 7/4°C). Responses of ecosystem respiration (ER) were similar at each measurement temperature irrespective of incubation temperature regimes. ER, expressed on a leaf-area basis, however, was significantly lower following the warmer incubation, suggesting a downregulation of ER. Warmer incubation resulted in a greater specific leaf area and N concentration, and a lower δ13C in live aboveground C. quitensis, but a higher δ13C in D. antarctica, implying species-specific responses to warming. Concentrations of dissolved organic C and N and inorganic N in soil leachates showed that short-term temperature changes had no noticeable effect on soil biogeochemical processes. The results suggest that downregulation of ER, together with plant species differences in leaf-area production and N use, can play a crucial role in constraining the C-cycle response of Antarctic tundra ecosystems to warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号