首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.  相似文献   

2.
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad953BP1 near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad953BP1. Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad953BP1 is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.  相似文献   

3.
Tel1/ATM and Mec1/ATR checkpoint kinases are activated by DNA double‐strand breaks (DSBs). Mec1/ATR recruitment to DSBs requires the formation of RPA‐coated single‐stranded DNA (ssDNA), which arises from 5′–3′ nucleolytic degradation (resection) of DNA ends. Here, we show that Saccharomyces cerevisiae Mec1 regulates resection of the DSB ends. The lack of Mec1 accelerates resection and reduces the loading to DSBs of the checkpoint protein Rad9, which is known to inhibit ssDNA generation. Extensive resection is instead inhibited by the Mec1‐ad mutant variant that increases the recruitment near the DSB of Rad9, which in turn blocks DSB resection by both Rad53‐dependent and Rad53‐independent mechanisms. The mec1‐ad resection defect leads to prolonged persistence at DSBs of the MRX complex that causes unscheduled Tel1 activation, which in turn impairs checkpoint switch off. Thus, Mec1 regulates the generation of ssDNA at DSBs, and this control is important to coordinate Mec1 and Tel1 signaling activities at these breaks.  相似文献   

4.
Yeast Mec1/Ddc2 protein kinase, the ortholog of human ATR/ATRIP, plays a central role in the DNA damage checkpoint. The PCNA-like clamp Rad17/Mec3/Ddc1 (the 9-1-1 complex in human) and its loader Rad24-RFC are also essential components of this signal transduction pathway. Here we have studied the role of the clamp in regulating Mec1, and we delineate how the signal generated by DNA lesions is transduced to the Rad53 effector kinase. The checkpoint clamp greatly activates the kinase activity of Mec1, but only if the clamp is appropriately loaded upon partial duplex DNA. Activated Mec1 phosphorylates the Ddc1 and Mec3 subunits of the clamp, the Rad24 subunit of the loader, and the Rpa1 and Rpa2 subunits of RPA. Phosphorylation of Rad53, and of human PHAS-1, a nonspecific target, also requires a properly loaded clamp. Phosphorylation and binding studies with individual clamp subunits indicate that the Ddc1 subunit mediates the functional interactions with Mec1.  相似文献   

5.
BACKGROUND: The DNA damage checkpoint is a protein kinase-based signaling system that detects and signals physical alterations in DNA. Despite having identified many components of this signaling cascade, the exact mechanisms by which checkpoint kinases are activated after DNA damage, as well as the role of the checkpoint mediators, remain poorly understood. RESULTS: To elucidate the mechanisms that underlie the MEC1 and RAD9-dependent activation of Rad53, the Saccharomyces cerevisiae ortholog of Chk2, we mapped and characterized in vivo phosphorylation sites present on Rad53 after DNA damage by mass spectrometry. We find that Rad53 requires for its activation multisite phosphorylation on a number of typical and atypical Mec1 phosphorylation sites, thus confirming that Rad53 is a direct target of Mec1, the mammalian ATR homolog. Moreover, by using biochemical reconstitution experiments, we demonstrate that efficient and direct phosphorylation of Rad53 by Mec1 is only observed in the presence of purified Rad9, the archetypal checkpoint mediator. We find that the stimulatory activity of Rad9 requires a phospho- and FHA-dependent interaction with Rad53, which allows Rad53 to be recognized as a substrate for Mec1. CONCLUSIONS: Our results indicate that Rad9 acts as a bona fide signaling adaptor that enables Rad53 phosphorylation by Mec1. Given the high degree of conservation of checkpoint signaling in eukaryotes, we propose that one of the critical functions of checkpoint mediators such as MDC1, 53BP1, or Brca1 is to act as PIKK adaptors during the DNA damage response.  相似文献   

6.
Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.  相似文献   

7.
Saccharomyces cerevisiae cells with a single double-strand break (DSB) activate the ATR/Mec1-dependent checkpoint response as a consequence of extensive ssDNA accumulation. The recombination factor Tid1/Rdh54, a member of the Swi2-like family proteins, has an ATPase activity and may contribute to the remodelling of nucleosomes on DNA. Tid1 dislocates Rad51 recombinase from dsDNA, can unwind and supercoil DNA filaments, and has been implicated in checkpoint adaptation from a G2/M arrest induced by an unrepaired DSB.Here we show that both ATR/Mec1 and Chk2/Rad53 kinases are implicated in the phosphorylation of Tid1 in the presence of DNA damage, indicating that the protein is regulated during the DNA damage response. We show that Tid1 ATPase activity is dispensable for its phosphorylation and for its recruitment near a DSB, but it is required to switch off Rad53 activation and for checkpoint adaptation. Mec1 and Rad53 kinases, together with Rad51 recombinase, are also implicated in the hyper-phosphorylation of the ATPase defective Tid1-K318R variant and in the efficient binding of the protein to the DSB site.In summary, Tid1 is a novel target of the DNA damage checkpoint pathway that is also involved in checkpoint adaptation.  相似文献   

8.
Zubko MK  Guillard S  Lydall D 《Genetics》2004,168(1):103-115
Cell cycle arrest in response to DNA damage depends upon coordinated interactions between DNA repair and checkpoint pathways. Here we examine the role of DNA repair and checkpoint genes in responding to unprotected telomeres in budding yeast cdc13-1 mutants. We show that Exo1 is unique among the repair genes tested because like Rad9 and Rad24 checkpoint proteins, Exo1 inhibits the growth of cdc13-1 mutants at the semipermissive temperatures. In contrast Mre11, Rad50, Xrs2, and Rad27 contribute to the vitality of cdc13-1 strains grown at permissive temperatures, while Din7, Msh2, Nuc1, Rad2, Rad52, and Yen1 show no effect. Exo1 is not required for cell cycle arrest of cdc13-1 mutants at 36 degrees but is required to maintain arrest. Exo1 affects but is not essential for the production of ssDNA in subtelomeric Y' repeats of cdc13-1 mutants. However, Exo1 is critical for generating ssDNA in subtelomeric X repeats and internal single-copy sequences. Surprisingly, and in contrast to Rad24, Exo1 is not essential to generate ssDNA in X or single-copy sequences in cdc13-1 rad9Delta mutants. We conclude that Rad24 and Exo1 regulate nucleases with different properties at uncapped telomeres and propose a model to explain our findings.  相似文献   

9.
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.  相似文献   

10.
Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. We demonstrate that Ddc1p interacts physically in vivo with Mec3p, and this interaction requires Rad17p. We also show that phosphorylation of Ddc1p depends on the key checkpoint protein Mec1p and also on Rad24p, Rad17p and Mec3p. This suggests that Mec1p might act together with the Rad24 group of proteins at an early step of the DNA damage checkpoint response. On the other hand, Ddc1p phosphorylation is independent of Rad53p and Rad9p. Moreover, while Ddc1p is required for Rad53p phosphorylation, it does not play any major role in the phosphorylation of the anaphase inhibitor Pds1p, which requires RAD9 and MEC1. We suggest that Rad9p and Ddc1p might function in separated branches of the DNA damage checkpoint pathway, playing different roles in determining Mec1p activity and/or substrate specificity.  相似文献   

11.
The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys(79) methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase.  相似文献   

12.
Mec1 [ATR (ataxia telangiectasia mutated- and Rad3-related) in humans] is the principle kinase responsible for checkpoint activation in response to replication stress and DNA damage in Saccharomyces cerevisiae. The heterotrimeric checkpoint clamp, 9-1-1 (checkpoint clamp of Rad9, Rad1 and Hus1 in humans and Ddc1, Rad17 and Mec3 in S. cerevisiae; Ddc1-Mec3-Rad17) and the DNA replication initiation factor Dpb11 (human TopBP1) are the two known activators of Mec1. The 9-1-1 clamp functions in checkpoint activation in G1- and G2-phase, but its employment differs between these two phases of the cell cycle. The Ddc1 (human Rad9) subunit of the clamp directly activates Mec1 in G1-phase, an activity identified only in S. cerevisiae so far. However, in G2-phase, the 9-1-1 clamp activates the checkpoint by two mechanisms. One mechanism includes direct activation of Mec1 by the unstructured C-terminal tail of Ddc1. The second mech-anism involves the recruitment of Dpb11 by the phosphorylated C-terminal tail of Ddc1. The latter mechanism is highly conserved and also functions in response to replication stress in higher eukaryotes. In S. cerevisiae, however, both the 9-1-1 clamp and the Dpb11 are partially redundant for checkpoint activation in response to replication stress, suggesting the existence of additional activators of Mec1.  相似文献   

13.
When DNA is damaged or DNA replication goes awry, cells activate checkpoints to allow time for damage to be repaired and replication to complete. In Saccharomyces cerevisiae, the DNA damage checkpoint, which responds to lesions such as double-strand breaks, is activated when the lesion promotes the association of the sensor kinase Mec1 and its targeting subunit Ddc2 with its activators Ddc1 (a member of the 9-1-1 complex) and Dpb11. It has been more difficult to determine what role these Mec1 activators play in the replication checkpoint, which recognizes stalled replication forks, since Dpb11 has a separate role in DNA replication itself. Therefore we constructed an in vivo replication-checkpoint mimic that recapitulates Mec1-dependent phosphorylation of the effector kinase Rad53, a crucial step in checkpoint activation. In the endogenous replication checkpoint, Mec1 phosphorylation of Rad53 requires Mrc1, a replisome component. The replication-checkpoint mimic requires colocalization of Mrc1-LacI and Ddc2-LacI and is independent of both Ddc1 and Dpb11. We show that these activators are also dispensable for Mec1 activity and cell survival in the endogenous replication checkpoint but that Ddc1 is absolutely required in the absence of Mrc1. We propose that colocalization of Mrc1 and Mec1 is the minimal signal required to activate the replication checkpoint.  相似文献   

14.
Majka J  Burgers PM 《DNA Repair》2005,4(10):1189-1194
The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These subunits show structural similarities with the replication clamp PCNA and indeed, it was demonstrated in vitro that Rad17/3/1 could be loaded onto DNA by checkpoint specific clamp loader Rad24-RFC, analogous to the PCNA-RFC clamp-clamp loader system. We have studied the interactions between the checkpoint clamp subunits and the activity of partial clamp complexes. We find that none of the possible partial complexes makes up a clamp that can be loaded onto DNA by Rad24-RFC. In agreement, overexpression of DDC1 or RAD17 in a MEC3Delta strain, or of MEC3 or RAD17 in a DDC1Delta strain shows no rescue of damage sensitivity.  相似文献   

15.
The use of translesion synthesis (TLS) polymerases to bypass DNA lesions during replication constitutes an important mechanism to restart blocked/stalled DNA replication forks. Because TLS polymerases generally have low fidelity on undamaged DNA, the cell must regulate the interaction of TLS polymerases with damaged versus undamaged DNA to maintain genome integrity. The Saccharomyces cerevisiae checkpoint proteins Ddc1, Rad17, and Mec3 form a clamp-like structure (the 9-1-1 clamp) that has physical similarity to the homotrimeric sliding clamp proliferating cell nuclear antigen, which interacts with and promotes the processivity of the replicative DNA polymerases. In this work, we demonstrate both an in vivo and in vitro physical interaction between the Mec3 and Ddc1 subunits of the 9-1-1 clamp and the Rev7 subunit of the Polzeta TLS polymerase. In addition, we demonstrate that loss of Mec3, Ddc1, or Rad17 results in a decrease in Polzeta-dependent spontaneous mutagenesis. These results suggest that, in addition to its checkpoint signaling role, the 9-1-1 clamp may physically regulate Polzeta-dependent mutagenesis by controlling the access of Polzeta to damaged DNA.  相似文献   

16.
The Saccharomyces cerevisiae Mec1-Ddc2 protein kinase (human ATR-ATRIP) initiates a signal transduction pathway in response to DNA damage and replication stress to mediate cell cycle arrest. The yeast DNA damage checkpoint clamp Ddc1-Mec3-Rad17 (human Rad9-Hus1-Rad1: 9-1-1) is loaded around effector DNA and thereby activates Mec1 kinase. Dpb11 (Schizosaccharomyces pombe Cut5/Rad4 or human TopBP1) is an essential protein required for the initiation of DNA replication and has a role in checkpoint activation. In this study, we demonstrate that Dpb11 directly activates the Mec1 kinase in phosphorylating the downstream effector kinase Rad53 (human Chk1/2) and DNA bound RPA. However, DNA was not required for Dpb11 to function as an activator. Dpb11 and yeast 9-1-1 independently activate Mec1, but substantial synergism in activation was observed when both activators were present. Our studies suggest that Dpb11 and 9-1-1 may partially compensate for each other during yeast checkpoint function.  相似文献   

17.
Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1BLM. How Exo1 and Dna2-Sgs1BLM coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad953BP1. Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes.  相似文献   

18.
Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G1 phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Δ dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.  相似文献   

19.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

20.
Rad9 is required for the activation of DNA damage checkpoint pathways in budding yeast. Rad9 is phosphorylated after DNA damage in a Mec1- and Tel1-dependent manner and subsequently interacts with Rad53. This Rad9-Rad53 interaction has been suggested to trigger the activation and phosphorylation of Rad53. Here we show that Mec1 controls the Rad9 accumulation at double-strand breaks (DSBs). Rad9 was phosphorylated after DSB induction and associated with DSBs. However, its phosphorylation and association with DSBs were significantly decreased in cells carrying a mec1Delta or kinase-negative mec1 mutation. Mec1 phosphorylated the S/TQ motifs of Rad9 in vitro, the same motifs that are phosphorylated after DNA damage in vivo. In addition, multiple mutations in the Rad9 S/TQ motifs resulted in its defective association with DSBs. Phosphorylation of Rad9 was partially defective in cells carrying a weak mec1 allele (mec1-81), whereas its association with DSBs occurred efficiently in the mec1-81 mutants, as found in wild-type cells. However, the Rad9-Rad53 interaction after DSB induction was significantly decreased in mec1-81 mutants, as it was in mec1Delta mutants. Deletion mutation in RAD53 did not affect the association of Rad9 with DSBs. Our results suggest that Mec1 promotes association of Rad9 with sites of DNA damage, thereby leading to full phosphorylation of Rad9 and its interaction with Rad53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号