首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The small hesionid polychaete Hesionides arenaria possesses paired segmental excretory organs that closely resemble solenocytic protonephridia. The nephridium consists of one terminal cell and four tubule cells which form the emission channel. From the terminal cell, up to six flagella arise each surrounded by a weir of ten regularly arranged cytoplasmic rods. The structure of the cytoplasm of three of the following cells suggests that they function in active transport and storage. Because all of the larger, more primitive species of this family are equipped with metanephridia, the possibility is discussed that these organs have been developed out of metanephridia. The Hesionides arenaria nephridium may be a morphological stage in the evolutionary pathway from metanephridia to solenocytes. This would mean that solenocytes can no longer be considered to be homologous in every case with other protonephridial organs in polychaetes and may well be derived several times independently out of metanephridia or true protonephridia.  相似文献   

2.
Larval protonephridia appear as paired ectodermal invaginations on the posterior body end of the larva (actinotrocha), at early stages of its development. The protonephridium of the early actinotrocha has a straight canal and one group of solenocytes distally. The protonephridium of the late actinotrocha has a U-shaped canal and two (upper and lower) groups of solenocytes. After metamorphosis, solenocytes degenerate and the canal is connected with metacoel. The metanephridial funnel is formed from the upper metacoelomic wall epithelium and the lateral mesentery. The definitive nephridium consists of two parts: the ectodermal canal (derived from the protonephridial canal) and the mesodermal funnel, a derivative of the coelomic epithelium. Thus, the phoronid excretory organ is a nephromixium. Consecutive stages of the evolution of nephridia in phoronids are discussed.  相似文献   

3.
Summary The excretory organs of Amphioxus occur as segmentally arranged structures throughout the pharyngeal region and may be divided into three components: the solenocytes, the renal tubule, and the renal glomerulus.The solenocytes possess foot processes that rest upon the coelomic surface of the ligamentum denticulatum. The tubular apparatus of the solenocytes consists of ten triangular rods surrounding a central flagellum. The distal end of the tubular apparatus enters branches of the renal tubule. The renal tubule eventually opens into the atrial cavity of Amphioxus. The renal glomerulus is a sinus within the connective tissue of the ligamentum dentieculatum where it connects elements of the branchial circulation with the dorsal aorta. The renal glomerulus, like other blood vessels of Amphioxus, lacks an endothelial lining.If Amphioxus is adapted to artificial sea water at different concentrations there is no change in kidney morphology suggesting that Amphioxus is either is osmotic with its environment or is osmoregulating with other organs.This work was supported by U.S. Public Health Service Grant 5-T01-GM 00582.  相似文献   

4.
The protonephridial system of several Loricifera was studied by transmission electron microscopy. A larval specimen of Rugiloricus cf. cauliculus possesses two protonephridia, which are "capped" frontally by a compact mass of still undifferentiated gonadal cells. Each protonephridium consists of four monociliary terminal cells and four canal cells with a diplosome but no cilia. Because of incomplete series of sections and unsatisfactory fixation, the outleading cell(s) could not be detected. In a male specimen of Armorloricus elegans, each gonad contains two protonephridia that open into the gonadal lumen. Each protonephridium consists of two monociliary terminal cells, each forming a filter, two nonciliated canal cells, and two nephroporus cells. The protonephridial lumina of the latter cells fuse to one common lumen, which unites with the gonadal lumen. Preliminary observations on the protonephridia of a female Nanaloricus mysticus reveal a more complicated arrangement of interdigitating terminal and canal cells. One or two terminal cells form their own individual filter or four cells form a common compound filter. The cilium of the terminal cells of all species investigated are surrounded by a palisade of nine microvilli that support the filter barrier made of an extracellular matrix. An additional filter diaphragm could be traced between the pores in the cell wall of each terminal cell of A. elegans. The urogenital system of the Loricifera differs from that of the Priapulida in that the protonephridia of the former are completely integrated into the gonad, whereas the excretory organs of the latter open into the urogenital duct caudally of the gonads.  相似文献   

5.
The cyclorhagid kinorhynch Echinoderes aquilonius Higgins & Kristensen, 1988 possesses a single pair of protonephridia located in segments 10 and 11. The protonephridia consist of: (1) three terminal cells T-1, T-2. T-3, each with two cilia; (2) a single non-ciliated canal cell; (3) a nephridiopore cell with many microvilli and a cuticular sieve plate. The protonephridia of Echinoderes are presumed to develop from the ectoderm near the area of the sieve plate on the eleventh segment, and are suspended in the dorso-lateral pseudocoelomic cavity where they are surrounded by a basal lamina. One of the terminal cells (T-1) secondarily penetrates the basal lamina of the tenth segment and a part of the cell attaches to the cuticle. The kinorhynch protonephridia are compared with the excretory organs of other Bilateria. expecially the ‘aschelminths’, and apomorphic characters of the kinorhynch protonephridia are defined.  相似文献   

6.
We describe the ultrastructural organization of the anal organs of Craterostigmus tasmanianus, which are located on the ventral side of the bivalvular anal capsule. Each part of the capsule bears four pore fields with several anal pores. The pores lead into a pore canal, which is surrounded by the single-layered epithelium of the anal organs. Each anal organ is composed of four different cell types: transporting cells of the main epithelium, junctional cells, isolated epidermal glands, and the cells forming the pore canal. The transporting cells exhibit infoldings of the outer cell membranes, forming a basal labyrinth and a poorly developed apical complex. The cells are covered by a specialized cuticle with a widened subcuticular layer. Only the cuticle of the main epithelium is covered by a mucous layer, secreted by the epidermal glands. The ultrastructural organization of the anal organ is comparable to the coxal and anal organs of other pleurostigmophoran Chilopoda. It is likely that the coxal and anal organs of the Pleurostigmophora are homologous, due to their identical ultrastructural organization. Differences concerning the location on the trunk of Pleurostigmophora are not sufficient to reject a hypothesis of homology. Anal organs are found not only in Craterostigmomorpha, but also in most adult Geophilomorpha, and in larvae and most adults of Lithobiomorpha. The anal organs of C. tasmanianus are thought to play an important role in the uptake of atmospheric water. J. Morphol.  相似文献   

7.
Myzostoma cirriferum Leuckart, 1836 possesses five paired, serially arranged, blindending nephridial organs which are described for the first time. Ultrastructural investigations reveal that each nephridium is composed of three terminal cells and one tubular cell that forms the emission tubule. The central lumen of the individual terminal cells contains six to nine flagella, each of which is surrounded regularly by cytoplasmic rods arranged in parallel. Weir-like fenestrations in the peripheral wall of the terminal cells make up the connection between the central lumina and the extracellular space around the nephridial organ. The canal of the emission tubule possesses cilia, microvilli and cytoplasmic structures, suggesting involvement of this cell with active transport and storage. It opens into the cuticle at the ventral surface of the animal.  相似文献   

8.
The epidermal maxilla II-gland of Scutigera coleoptrata was investigated using light and electron microscopy. The glandular epithelium surrounds a spacious integumental cavity at the base of the maxilla II. The gland is formed as a compound gland organ that is composed of thousands of epidermal gland units. Each of them consists of four different cell types: a secretory cell, an accessory or intermediary cell, and a proximal and distal canal cell. The intermediary and the two canal cells form a conducting canal. Only in the most distal part of the intermediary cell is the canal lined by a cuticle. In the area of the two canal cells, the conducting canal is completely covered by a cuticle. The canal passes through the cuticle and opens into the spacious integumental cavity, which serves as a secretion reservoir. The structural organization of the epidermal maxilla II-gland was compared to that of other compound epidermal gland organs in Chilopoda and Diplopoda. All these glandular organs in Myriapoda share the same ground pattern.  相似文献   

9.
K. Rohde  N. Watson 《Acta zoologica》1991,72(3):137-142
The terminal part of the protonephridia of Microstomum is formed by a branching proximal canal cell and (at least?) two terminal cells. Each weir consists of longitudinal (sometimes convoluted) ribs continuous with the cytoplasm of the terminal cell. Internal leptotriches arise from the terminal and proximal canal cells. Near the tip of the flame, the proximal canal cell tube is surrounded by the more external terminal cell and connected to it by a septate junction. Large cristate mitochondria are densely packed in the terminal and canal cells. The flame bulb of Microstomum differs markedly from that of other macrostomids (Macrostomum, Paramalostomum) examined. Phylogenetic implications are discussed.  相似文献   

10.
THE FUNCTIONAL ORGANIZATION OF FILTRATION NEPHRIDIA   总被引:4,自引:0,他引:4  
(1) Based on the classical studies of Goodrich, protonephridia are believed to be phylogenetic antecedents of metanephridia. It is argued here that the primary factor determining the type of nephridium expressed is body size rather than phylogenetic status. (2) The proposed model defines a nephridium functionally and predicts two general configurations for filtration nephridia in animals. (3) Application of the model to metanephridial and protonephridial systems indicates differences in the sites of ultrafiltration and mechanisms of pressure generation. (4) Metanephridial systems function by muscle-mediated filtration of vascular fluid into a coelomic space before modification by an excretory duct. (5) Protonephridial systems function by cilia-mediated filtration of extracellular fluid into the lumen of a protonephridial terminal cell before modification in an adjoining duct. (6) The model predicts a correlation between animals with blood vessels and metanephridia, and animals without blood vessels and protonephridia. The correlation is shown to be nearly perfect. (7) Exceptions to the model are discussed. (8) Original experimental evidence is given for the permeability of the protonephridial terminal cell to iron dextran and its reabsorption by the protonephridial duct in the polychaete, Glycera dibranchiata. (9) Experimental data for proto- and metanephridial systems are summarized and shown to support the proposed model. (10) The ultrastructure of the exceptional amphioxus ‘protonephridium’ is reviewed and original data are presented. Its organization is structurally and perhaps functionally intermediate between proto- and metanephridial systems. (11) An original ultrastructural comparison is made of monociliated nitration cells in a size range of larval invertebrates from five phyla. Filtration cells that are structurally intermediate between protonephridial solenocytes and metanephridial podocytes are noted in larvae intermediate in body size between the two extremes. The comparative data suggest that (i) podocytes and solenocytes are homologous cells and (ii) that body size is correlated with which of the two designs is expressed. (12) The fates of larval podocytes are followed through metamorphosis in three species. The results confirm the equivalence of podocytes and solenocytes as suggested by the comparative analysis. They further indicate that which morph is expressed is a function of body design factors discussed in the model. (13) Protonephridia are believed to be primitive to metanephridia because they occur in presumably primitive animals and in ontogenetic stages of many animals with metanephridia as adults. It is suggested here that the distribution of protonephridia is related to small body size and the lack of blood vessels, regardless of phylogenetic status. The occurrence of protonephridia in the larvae of species with metanephridia as adults is explained similarly as a function of the small larval size and lack of blood vessels.  相似文献   

11.
Based on electron microscopic observations, the structure of the solenocytes ofA. mucosa is described. The tube of the solenocyte is made up of 14–15 rods. These rods, which are filled with regularly packed filaments, are interconnected by an amorphous to filamentous substance. A single flagellum, lying in the tube, is surrounded by a sheet of amorphous material. The functional organization of the solenocytes is discussed.  相似文献   

12.
The maxillary gland of the highly adapted stygobiont species, Antrobathynella stammeri (Bathynellacea, Syncarida), consists of an end sac, an excretory tubule, and a terminal duct. No valve was found. The excretory tubule forms a loop extending back into the fourth thoracic segment. The end sac is composed of five typical podocytes. Ultrastructurally and functionally, two cell types characterize, respectively, proximal and distal sections of the excretory tubule. Epithelial cells are covered with extremely broad (up to 0.4 μm) microvilli. A basal labyrinth was not seen. Therefore, it is unlikely that the maxillary gland is able to produce a hypoosmotic urine necessary for freshwater animals. Tubule cells can be surrounded by parenchymal cells that produce numerous vesicles, suggesting possible physiological interactions between tubule cells and parenchyma. The ectodermal terminal duct is lined with cuticle and is differentiated into a pulsatile body consisting of two interconnected ampules. The first functions as a bladder. The second ampule, under muscular control, excretes the urine. Pulsatile body, looping tubule, and broad microvilli appear to be distinctive features of the bathynellacid excretory organ. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Here, for the first time in an ascaridoid (Hysterothylacium auctum), we present structural features of the phasmids, paired sense organs, positioned in a bilateral manner close to the point of the tail; the features were obtained using scanning and transmission electron microscopy. We found that each phasmid consists of a single ciliated dendritic process situated in a phasmidial canal surrounded by 2 supporting cells, a socket and a sheath cell. The socket cell contains clusters of electron-dense fibrous material in its apical region and covers the phasmidial canal along its whole length. The sheath cell is characterized by a well-developed endoplasmic reticulum. The phasmidial canal is lined with a thin layer of cuticle that becomes incomplete at the base of the ciliated dendritic process. In this region, the dendritic process consists primarily of a high number of microtubule singlets and some peripheral microtubule doublets. The base of the dendritic process, containing numerous striated rootlets, gives off a large number of fingerlike offshoots, villi, invading the surrounding sheath cell. The systematic significance and functional implication of the phasmid in nematodes are also discussed.  相似文献   

14.
The chemoreceptors of Limulus polyphemus (L.) are polyneuronal sensilla found in the spines of the coxal gnathobases of each walking leg, the spines of the chilarial appendages, and the chelae of all the limbs. Each sensillum contains 6–15 bipolar sensory cells that share a single pore in the cuticle. The dendrites of the sensory cells of each sensillum course to the cuticle together. These attenuate sharply and enter a canal in the cuticle as a very narrow terminal thread. The dendrites retain their identity in the thread, but with the light microscope, they are usually not visible individually. Each thread, consisting of 6–15 dendrites, is accompanied to the cuticular surface by a cuticular tubule found within the canal. The chemoreceptor sensilla of the gnathobase, chilarium, and chela, the temperature organs of Patten, and the flabellar receptor organs all have the same basic organization. In general this is the same structural plan shown by chemoreceptors of other arthropods. Several different mechanisms of peripheral physiological interaction among receptor cells are possible with a sensillum organization like that described here for Limulus.  相似文献   

15.
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.  相似文献   

16.
The tentacles of the pterobranch Cephalodiscus, a hemisessile ciliary feeder, originate from the lateral aspects of the arms and are covered by an innervated epithelium, the majority of its cells bearing microvilli. Each side of a tentacle has two rows of ciliated cells and additional glandular cells. The coelomic spaces in the tentacles are lined by cross-striated myoepithelial cells, allowing rapid movements of the tentacles. One, possibly two, blood vessels accompany the coelomic canal. On their outer sides the arms are covered by a simple ciliated epithelium with intra-epithelial nerve fibres; the inner side is covered by vacuolar cells. On both sides different types of exocrine cells occur. The collar canals of the mesocoel are of complicated structure. Ventrally their epithelium is pseudostratified and ciliated; dorsally it is lower and forms a fold with specialized cross-striated myoepithelial cells of the coelomic lining. Arms, tentacles, associated coelomic spaces and the collar canal of the mesocoel are considered to be functionally interrelated. It is assumed that rapid regulation of the pore width is possible and even necessary when the tentacular apparatus is retracted, which presumably leads to an increase of hydrostatic pressure in the coelom.  相似文献   

17.
Arenicola marina gills are hollow, branched, body outgrowths with a central coelomic cavity and afferent and efferent vessels. The gill surface area per unit body weight is about 4 cm2/g wet weight. The blood vascular system anatomy differs from the tip to the base of the gill. In the distal branches of the gill the superficial afferent and efferent vessels are joined by connecting vessels. All vessels arise as spacings between the basal laminae of the thin epidermis and of the coelomic myoepithelium. The contractile part of this epithelium mainly borders the afferent and efferent vessels, whereas pedicel-like cytoplasmic processes extend from the cell bodies and mainly line the connecting vessels. In the proximal branches of the gill the afferent and efferent vessels located in the coelomic cavity are surrounded by the coelomic myoepithelium, and a peripheral blood plexus is present below the epidermis. The gill epidermis is everywhere thin and does not exhibit the characters of a transporting epithelium. The gill coelomic myoepithelium has several functions: (i) periodic contractions of the gill, propelling blood and coelomic fluid toward the central vascular and coelomic compartments; (ii) blood ultrafilration toward the coelomic cavity; (iii) probably transport, suggested by the specialized structures of the lateral membranes of the cells.  相似文献   

18.
D. Bunke 《Zoomorphology》1994,114(4):247-258
Summary The excretory system of Aeolosoma bengalense has been examined by light and electron microscopy. The system consists of seven serially arranged paris of metanephridia and six pairs of podocytes (referring to the first zoid of an animal chain). The podocytes surround blood spaces of the alimentary canal forming dorsoventrally running loops that emerge on both sides of it. The two elements of the system have a correlative position, each podocyte extending in close proximity to the funnel of a metanephridium. Only in the region of the first metanephridia are podocytes lacking. The nephrostome of the metanephridia consists of two cells, an inner one, the terminal duct cell, and an outer one enwrapping it, called the mantle cell. Nephrostomal cilia that extend into the coelomic space arise exclusively from the rim of the mantle cell whereas those of the terminal duct cell arranged on its luminal surface protrude into the canal forming a flame. The nephridial canal is ciliated throughout and is either intra- or extracellular. Its initial loops aggregate to form a compact organ, the nephridial body. The middle part of the duct constitutes a loop that ascends at each side of the alimentary canal where it is in intimate contact with its blood spaces. Ultrastructural features of the duct cells suggest a reabsorptive function in two regions, the nephridial body and the uppermost part of the loop. The terminal part of the duct passes through the nephridial body and opens ventrolaterally. Generally, the transverse vascular loops at the gut consist of one podocyte each. In the oesophageal region, where only one pair of podocytes is present, the loops connect the dorsal with the ventral longitudinal vessel. Three pairs of podocytes are present in the dilated region of the intestine emerging from its lateral wall and joining the median ventral vessel or blood spaces near by. In the hind gut, where two pairs of podocytes occur, the loops arise from the dorsolateral part and enter directly the ventral vessel. Cytological features of podocytes resemble those of other animals. The results are discussed on the basis of current theories on the function and the phylogenetic significance of excretory systems in the Annelida.Abbreviations bl basal lamina - bs blood space - bv blood vessel - cf ciliary flame - ci cilia - co connection of the vascular loop with the intestinal blood space - cu cuticle - db dense body - dc duct cell - di dictyosome - za zonula adhearens - dv dorsal vessel - ecb epicuticular body - ev endocytotic vesicle - ic intestinal cell - ici inner cilia - iv intestinal vessel - lm longitudinal muscle - mc mantle cell - mg midgut - mi mitochondrion - mv microvilli - nu nucleus - oci outer cilia - oe oesophagus - pc podocyte - pe pedicel - pel primary elongation of the podocyte - sm slit membrane - tc terminal duct cell - ve vesicle with heterogeneous contents - vv ventral vessel  相似文献   

19.
The femoral chordotonal organ (FCO) inChrysoperla carneais situated in the distal part of the femur and consists of two scoloparia, which are fused at their distal end. The distal scoloparium contains 17-20 scolopidia, and the proximal one six scolopidia. Each scolopidium consists of two sensory cells and three types of enveloping cells (glial, scolopale and attachment cell). The sensory cells of different scolopidia do not lie at the same level in the FCO. Therefore the attachment cells of different scolopidia have different lengths. In the FCO, three types of ciliary roots are found in different sensory cells. The dendrite of the sensory cell terminates in a distal process, which has the structure of a modified cilium (9x2+0). The very distal part of the cilium is surrounded by an extracellular electron dense material, the cap, and ends in a terminal dilation. The scolopale cell contains the electron dense scolopale rods, consisting of plentiful microtubules. In their middle third the scolopale rods are fused and form the scolopale. In the FCO septate junctions, desmosomes and hemidesmosomes are found.  相似文献   

20.
Abstract The hepatic region of Glossobalanus minutus is characterized by deep foldings of the dorsal side of the gut epithelium which affect the neighbouring tissues and structures: coelomic spaces, musculature and epidermis. The following cell types of the gut epithelium are described: vacuolated cells, undifferentiated cells, two types of mucous cells and two types of granular secretory cells. The nature and function of the different cell types are discussed. Data on the general ciliation and subepithelial nerve plexus of the gut epithelium are also given, with special mention of a possible neuroendocrine secretion towards the subjacent blood spaces. A well-developed blood sinus (gut sinus) lies between the gut and the visceral peritoneum. The ultrastructural features of the gut epithelium and its close association with the blood sinus point to an absorptive function. The coelomic cavity is reduced to a narrow space limited by two peritoneal sheets (visceral and parietal) of myoepithelial nature. Amoebocyte-like cells (coelomocytes) occur free in the coelomic fluid, and muscular, unicellular bridges are attached to both peritoneal walls across the coelomic space. The dorsal epidermis follows the gut foldings and is formed by flat, overlapping cells. The present observations are compared with previous histological, histochemical and ultrastructural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号