首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously described serine amide phosphates (SAPs) as a novel class of cytotoxic agents for prostate cancer. Several of them showed potent cytotoxicity against human prostate cancer cell lines, but were not selective in non-tumor cells. To improve the selectivity and further enhance the potency, we designed a new series of 2-aryl-4-oxo-thiazolidin-3-yl amides. The current work describes synthesis, SAR, and biological evaluation of these compounds for their ability to inhibit the growth of prostate cancer cells. The antiproliferative effects of synthesized compounds were examined in five human prostate cancer cell lines (DU-145, PC-3, LNCaP, PPC-1, and TSU), and in RH7777 cells (negative controls). From this study, three potent compounds (8, 20, and 21) have been detected, which are effective in killing prostate cancer cells with improved selectivity compared to SAPs.  相似文献   

2.
In our continuing efforts to develop novel chemotherapeutic agents for prostate cancer, recently we reported the discovery of 2-arylthiazolidine-4-carboxylic acid amides (ATCAAs) as a new class of cytotoxic agents. Several of them were very effective in killing specific human prostate cancer cell lines with low/sub-micromolar cytotoxicity and high selectivity against control cells in our sulforhodamine B assay. Encouraged with these preliminary results, we decided to further optimize this new scaffold to enhance the potency and selectivity. Current work describes the synthesis, SAR, and biological evaluation of new compounds for their ability to inhibit the growth of five human prostate cancer cell lines. The cytotoxicity data demonstrated that ATCAAs are sensitive to simple modifications or changes, which allowed us to understand the minimum structural requirements of this class of compounds to exhibit potent and selective anticancer activity against prostate cancer cells.  相似文献   

3.
To identify inhibitors of the intrinsic N-acetylated alpha-linked acidic dipeptidase (NAALADase) activity of prostate specific membrane antigen (PSMA) that may be useful for targeting imaging agents or chemotherapeutic drugs to disseminated prostate cancer, analogs of the tetrahedral transition state for hydrolysis of the natural substrate, N-acetylaspartylglutamate (NAAG), were synthesized. These compounds were assayed for their ability to inhibit the membrane-associated enzyme isolated from LNCaP prostate cancer cells. Active inhibitors were further assayed for their cytotoxicity and membrane binding. We have identified nine compounds, including fluorescent and iodine-labeled conjugates, which inhibit NAALADase enzyme activity with IC(50)s at, or below, 120nM. The binding of these compounds to the cell surface of viable LNCaP prostate tumor cells appears to be specific and saturable, and none of the compounds alter the cell cycle kinetics or induce apoptosis in LNCaP cells, suggesting that they are relatively innocuous and are suitable for targeting imaging agents or cytotoxic drugs to disseminated prostate cancer.  相似文献   

4.
Sulfide and sulfonyl derivatives of 1,2,4-oxadiazoles were synthesized and screened by MTT assay on the prostate cancer cells, DU-145. Six compounds were identified as potential anti-prostate cancer agents with IC(50) values ranging from 0.5 to 5.1μM. These compounds exhibited good activity on the androgen independent cells PC-3, while the results were moderate on androgen dependent LNCaP cells, suggesting the possibility of a mechanism of action different from that of the bioisosteric bicalutamide. Also a very low cytotoxicity was observed on non-cancerous cells MCF-10A.  相似文献   

5.
Several arylamino derivatives of nor-beta-lapachone were synthesized in moderate to high yields and found to show very potent cytotoxicity against six neoplastic cancer cells: SF-295 (central nervous system), HCT-8 (colon), MDAMB-435 (breast), HL-60 (leukaemia), PC-3 (prostate), and B-16 (murine melanoma), with IC(50) below 1 microg/mL. Their cytotoxicities were compared to doxorubicin and with their synthetic precursors, beta-lapachone and nor-beta-lapachone. The activity against a normal murine fibroblast L-929 showed that some of the compounds were selective against cancer cells. The absence of hemolytic activity (EC(50)>200 microg/mL), performed with erythrocyte suspensions, suggests that the cytotoxicity of the compounds was not related to membrane damage of mouse erythrocytes. For comparison purposes, one isomeric compound based on nor-alpha-lapachone was also synthesized and showed lower activity than the related ortho-derivative. The modified arylamino quinones appear as interesting new lead compounds in anti-cancer drug development.  相似文献   

6.
In our continuing study of curcumin analogs as potential anti-prostate cancer drug candidates, 15 new curcumin analogs were designed, synthesized and evaluated for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Twelve analogs (5-12, 15, 16, 19, and 20) are conjugates of curcumin (1) or methyl curcumin (2) with a flutamide- or bicalutamide-like moiety. Two compounds (22 and 23) are C4-mono- and difluoro-substituted analogs of dimethyl curcumin (DMC, 21). Among the newly synthesized conjugates compound 15, a conjugate of 2 with a partial bicalutamide moiety, was more potent than bicalutamide alone and essentially equipotent with 1 and 2 against both prostate tumor cell lines with IC(50) values of 41.8 μM (for LNCaP) and 39.1 μM (for PC-3). A cell morphology study revealed that the cytotoxicity of curcumin analogs or curcumin-anti-androgen conjugates detected from both prostate cancer cell lines might be due to the suppression of pseudopodia formation. A molecular intrinsic fluorescence experiment showed that 1 accumulated mainly in the nuclei, while conjugate 6 was distributed in the cytosol. At the tested conditions, anti-androgens suppressed pseudopodia formation in PC-3 cells, but not in LNCaP cells. The evidence suggests that distinguishable target proteins are involved, resulting in the different outcomes toward pseudopodia suppression.  相似文献   

7.
8.
The aberrant hedgehog (Hh)/GLI signaling pathway causes the formation and progression of a variety of tumors. By screening tropical plant extracts by using our screening system, Zizyphus cambodiana was found to include Hh/GLI signaling inhibitors. Bioassay-guided fractionation of this plant extract led to the isolation of three active pentacyclic triterpenes, colubrinic acid (1), betulinic acid (2) and alphitolic acid (3), as potent inhibitors. The inhibition of GLI-related protein expression with 1 or 2 was observed in HaCaT cells with exogenous GLI1, or human pancreatic cancer cells (PANC1), which express Hh/GLI components aberrantly. The expressions of GLI-related proteins PTCH and BCL2 were clearly inhibited by 1 or 2. We also examined the cytotoxicity of these active compounds against PANC1, human prostate cancer cells (DU145) and mouse embryo fibroblast cells (C3H10T1/2). The cytotoxicity against cancer cells (PANC1 and DU145) by 1 or 2 would be caused by inhibition of the expression of the anti-apoptosis protein BCL2. These pentacyclic triterpene inhibitors showed an important relationship between Hh/GLI signaling inhibition, the decrease of BCL2, and cytotoxicity against cancer cells.  相似文献   

9.
Toyocamycin and some analogues have shown potent antitumor activities; however, none of them could be used clinically primarily owing to their cytotoxicity to normal human cells. In order to overcome the weakness of these nucleoside analogues, substitution of a variety of modified sugars for the ribofuranose was explored in our laboratories with expectation that certain sugar-modified toyocamycin analogues may be selectively cytotoxic to cancer cells. In this article, we report synthesis and cytotoxicity of 4'-C- and 5'-C-substituted toyocamycins, which were prepared via the condensations of 4-C- and 5-C-substituted ribofuranose derivatives 11, 12, 13, 20, 21, and 26 with the silylated form of 4-amino-6-bromo-5-cyanopyrrolo[2,3-]pyrimidine (27) and subsequent debromination and debenzoylation. When compared to the parent toyocamycin, all these analogues showed much lower cytotoxicity to human prostate cancer cells (HTB-81), mouse melanoma cancer cells (B16) as well as normal human fibroblasts. Compound 1e showed a significant cytotoxicity to the prostate cancer cells and a moderate selectivity. The results suggested that sugar modifications, especially those that may affect phosphorylation of nucleosides, could alter cytotoxicity profile significantly.  相似文献   

10.
Chemokine receptor CCR5 plays an important role in the pro-inflammatory environment that aids in the proliferation of prostate cancer cells. Previously, a series of CCR5 antagonists containing a piperidine ring core skeleton were designed based upon the proposed CCR5 antagonist pharmacophore from molecular modeling studies. The developed CCR5 antagonists were able to antagonize CCR5 at a micromolar level and inhibit the proliferation of metastatic prostate cancer cell lines. In order to further explore the structure–activity-relationship of the pharmacophore identified, the molecular scaffold was expanded to contain a piperazine ring as the core. A number of compounds that were synthesized showed promising anti prostate cancer activity and reasonable cytotoxicity profiles based on the biological characterization.  相似文献   

11.
A series of square planar cobalt(II) compounds bearing tetradentate β-ketoaminato ligands with variation in the number of ―CF3 ligand substituents has been prepared and structurally and spectroscopically characterized. The fluorinated β-ketoamine ligands were prepared utilizing a multistep reaction sequence employing a silylenol protecting group. An additional tetrahedral cobalt compound bearing two bidentate β-ketoaminato ligands was also prepared and characterized.Cytotoxic activity of the cobalt-containing complexes was evaluated using six human cell lines; including two different prostate cancer cell lines (PC-3 and VCaP), acute monocytic leukemia (THP-1), astrocytoma (U-373 MG), hepatocellular carcinoma (HepG2), and neuroblastoma (SH-SY5Y) cells. The cobalt compounds are more active than their corresponding ligands. The activity is cell type specific; the cobalt compounds exhibit strong activity against human prostate cancer and monocytic leukemia cells but weak or no activity against neuroblastoma, astrocytoma, and liver carcinoma cells. Activity generally increases with a greater number of ―CF3 substituents, and square planar complexes exhibit greater activity than the tetrahedral derivative. The mechanisms of activity against human PC-3 prostate cancer cells involve caspase-3 and two different mitogen-activated protein kinases. The addition of a thiol antioxidant reduced cytotoxicity, suggesting the possible involvement of reactive oxygen species. These cobalt complexes may represent a novel class of cytotoxic drugs selective towards certain types of tumors.  相似文献   

12.
The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D) growth conditions using non-transformed prostate epithelial cells (EP156T), an androgen-sensitive prostate cancer cell line (LNCaP), and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D) growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.  相似文献   

13.
Intrinsic oxidative stress through enhanced production of reactive oxygen species (ROS) in prostate and other cancers may contribute to cancer progression due to its stimulating effect on cancer growth. In this study, we investigate differential responses to exogenous oxidative stimuli between aggressive prostate cancer and normal cell lines and explore potential mechanisms through interactions between cytotoxicity, cellular ROS production and oxidative DNA damage. The circular, multi-copy mitochondrial DNA (mtDNA) is used as a sensitive surrogate to oxidative DNA damage. We demonstrate that exogenous H(2)O(2) induces preferential cytotoxicity in aggressive prostate cancer than normal cells; a cascade production of cellular ROS, composed mainly of superoxide (O(2)(-)), is shown to be a critical determinant of H(2)O(2)-induced selective toxicity in cancer cells. In contrast, mtDNA damage and copy number depletion, as measured by a novel two-phase strategy of the supercoiling-sensitive qPCR method, are very sensitive to exogenous H(2)O(2) exposure in both cancer and normal cell lines. Moreover, we demonstrate for the first time that the sensitive mtDNA damage response to exogenous H(2)O(2) is independent of secondary cellular ROS production triggered by several ROS modulators regardless of cell phenotypes. These new findings suggest different mechanisms underpinning cytotoxicity and DNA damage induced by oxidative stress and a susceptible phenotype to oxidative injury associated with aggressive prostate cancer cells in vitro.  相似文献   

14.
Ruthenium-based compounds have intriguing anti-cancer properties, and some of these novel compounds are currently in clinical trials. To continue the development of new metal-based drug combinations, we coupled ruthenium (Ru) with the azole compounds ketoconazole (KTZ) and clotrimazole (CTZ), which are well-known antifungal agents that also display anticancer properties. We report the activity of a series of 12 Ru–KTZ and Ru–CTZ compounds against three prostate tumor cell lines with different androgen sensitivity, as well as cervical cancer and lymphoblastic lymphoma cell lines. In addition, human cell lines were used to evaluate the toxicity against non-transformed cells and to establish selectivity indexes. Our results indicate that the combination of ruthenium and KTZ/CTZ in a single molecule results in complexes that are more cytotoxic than the individual components alone, displaying in some cases low micromolar CC50 values and high selectivity indexes. Additionally, all compounds are more cytotoxic against prostate cell lines with lower cytotoxicity against non-transformed epidermal cell lines. Some of the compounds were found to primarily induce cell death via apoptosis yet weakly interact with DNA. Our studies also demonstrate that the cytotoxicity induced by our Ru-based compounds is not directly related to their ability to interact with DNA.  相似文献   

15.
In this study, a series of 10 novel copper (II) and silver complexes of 1,3-diaryltriazene-substituted sulfonamides was synthesised. All the synthesised ligands and their metal complexes were assessed for in vitro cytotoxicity against human colorectal adenocarcinoma (DLD-1), cervix carcinoma (HeLa), breast adenocarcinoma (MDA-MB-231), colon adenocarcinoma (HT-29), endometrial adenocarcinoma (ECC-1), prostate cancer (DU-145 and PC-3), normal embryonic kidney (HEK-293), normal prostate epithelium (PNT-1A), and normal retinal pigment epithelium (ARPE-19) cells. Most of the metal complexes from the series showed to be more active against all cancerous cells than the uncomplexed 1,3-diaryltriazene-substituted sulfonamides, and lower cytotoxic effects observed on normal cells. Most of the Cu (II) and Ag (I) metal complexes from the presented series showed high cytotoxic activity against HeLa cells with IC50 values ranging from 2.08 to >300?µM. Specifically, compound L3-Ag showed one of the highest cytotoxicity against all cancer cell lines with IC50 values between 3.30 to 16.18?µM among other tested compounds.  相似文献   

16.
Chiu HW  Chen YA  Ho SY  Wang YJ 《PloS one》2012,7(2):e31579
Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.  相似文献   

17.
A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC50 value of 7.22?±?0.47?µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile.  相似文献   

18.
A novel series of dihydronaphthalene and benzosuberene analogs bearing structural similarity to the combretastatins in terms of 1,2-diarylethene, trimethoxyphenyl, and biaryl functionality has been synthesized. The compounds have been evaluated in regard to their ability to inhibit tubulin assembly and for their cytotoxicity against selected human cancer cell lines. From this series of compounds, benzosuberene analogs 2 and 4 inhibited tubulin assembly at concentrations comparable to that of combretastatin A-4 (CA4) and combretastatin A-1 (CA1). Furthermore, analog 4 demonstrated remarkable cytotoxicity against the three human cancer cell lines evaluated (for example GI(50)=0.0000032 microM against DU-145 prostate carcinoma).  相似文献   

19.
Peptides are one of the leading groups of compounds that have been the subject of a great deal of biological research and still continue to attract researchers' attention. In this study, a series of tripeptides based on tyrosine amino acids were synthesized by the triazine method. The cytotoxicity properties of all compounds against human cancer cell lines (MCF-7), ovarian (A2780), prostate (PC-3), and colon cancer cell lines (Caco-2) were determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay method, and % cell viability and logIC50 values of the compounds were calculated. Significant decreases in cell viability were observed in all cells (p < 0.05). The comet assay method was used to understand that the compounds that showed a significant decrease in cell viability had this effect through DNA damage. Most of the compounds exhibited cytotoxicity by DNA damage mechanism. Besides, their interactions between investigated molecule groups with PDB ID: 3VHE, 3C0R, 2ZCL, and 2HQ6 target proteins corresponding to cancer cell lines, respectively, were investigated by docking studies. Finally, molecules with high biological activity against biological receptors were determined by ADME analysis.  相似文献   

20.
Geldanamycin (GDM) binds to the Hsp90 chaperone protein resulting in the degradation of several important signaling proteins. A series of GDM-testosterone linked hybrids has been synthesized and evaluated for activity against prostate cancer cell lines. The hybrid with the greatest activity exhibits potent and selective cytotoxicity against prostate cancer cells containing the androgen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号