首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Acetylcholine, its precursor (choline), and the enzymes of its biosynthesis and degradation (choline acetyltransferase and acetylcholinesterase, respectively) have been studied and quantified in extracts of several regions of the nervous system of the lobster and in single, isolated axons of identified efferent excitatory, efferent inhibitory and afferent sensory neurons. The choline acetyltransferase is a soluble enzyme similar to that from other species. The predominant acetylcholine-hydrolysing enzyme is largely membrane-bound and has been characterized as a specific acetylcholinesterase. A single peak of acetylcholinesterase activity can be detected upon velocity sedimentation analysis of Triton X-100-treated extracts of all regions of the nervous system. Choline acetyltransferase distribution parallels that of sensory neural elements, and its specific activity shows nearly a 500-fold difference from the richest to the poorest neural source. Acetylcholinesterase levels span only a 23-fold range, and activity is found in all neural regions, including those free of known sensory components. A radiochemical microassay for choline and acetylcholine in the range of 20–2000 pmol is described in detail. All 3 types of axons contain comparable levels of choline ( ca. 2 pmol/μg protein), but acetylcholine is asymmetrically distributed. Efferent axons contain no detectable acetylcholine, while sensory axons from abdominal muscle receptor organs have an average of 1·9 pmol/μg protein. Choline acetyltransferase is similarly distributed; sensory axons show at least 500-fold greater activity than efferent axons. Acetylcholinesterase is nearly uniformly distributed among the three types of fibres. These results are discussed in terms of a general view of transmitter accumulation in single neurons.  相似文献   

2.
—The enzymatic decarboxylation of l -DOPA was measured in isotonic dextrose homogenates of different regions of the human brain by estimating 14CO2 evolved from tracer amounts of d l -DOPA[carboxy1-14C]. Enzyme activity was linear with respect to tissue concentration and time of incubation. The reaction exhibited a pH maximum at 7·0, was completely dependent upon the presence of high concentrations of pyridoxal phosphate, proceeded at the same rate in an atmosphere of air and nitrogen, and produced dopamine in addition to CO2 as a reaction product. The enzyme preparation behaved like an aromatic l -amino acid decarboxylase: it also decarboxylated o-tyrosine and when incubated with 5-hydroxytryptophan, serotonin was isolated as the reaction product; but it was devoid of activity towards d -DOPA[carboxy1-14C]. Within the human brain, l -DOPA decarboxylase was most active in the putamen and caudate nucleus; the pineal gland, hypothalamus, and the reticular formation and dorsal raphe areas of the mesencephalon exhibited considerable activity. Areas of cerebral cortex exhibited very low enzymatic activity and in regions composed predominantly of white matter, l -DOPA decarboxylase activity was not significantly above blank values. The activity of l -DOPA decarboxylase in the human putamen and caudate nucleus tended to decrease with the age of the patients; in comparatively young subjects (46 yr old) the enzyme activity compared favourably with that found, by means of the same assay technique, in the caudate nucleus of the cat.  相似文献   

3.
Abstract— The distribution of choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) in different layers of the pigeon optic tectum and in some nuclei of the optic lobe have been investigated. About 40% of GAD and 25% of ChAT were found in the superficial part of tectum, but negligible activity was found in the stratum opticum. The highest GAD activity was found in layers 3-7 (according to the nomenclature of C ajal , 1911) with a peak in layer 4. ChAT activity peaked in layers 3, 5. 8 and 10/11. Its distribution correlated well with the staining pattern of AChE, particularly in the superficial part of the tectum. The distribution of ChAT and GAD did not change significantly 4 weeks after enucleation. ChAT and GAD activities were high in the nucleus isthmi, pars parvocellularis (Ipc). The activity of GAD was also high in the nucleus intercollicularis (ICo), the other nuclei showed less activity of both enzymes.  相似文献   

4.
Activities of five enzymes (pyruvate dehydrogenase complex; citrate synthase, EC 4.1.3.7; carnitine acetyltransferase, EC 2.3.1.7; acetyl-CoA synthetase, EC 6.2.1.1; and ATP citrate lyase, EC 4.1.3.8) were determined in cell bodies of anterior horn cells and dorsal root ganglion cells from the rabbit. For comparison, molecular layer, granular layer and white matter from rabbit and mouse cerebella and cerebral cortex and striatum from the mouse were analyzed. Samples (3–85 ng dry weight) were assayed in 180 to 370 ml of assay reagents containing CoASH and other substrates in excess. By using ‘CoA cycling’, the assay systems were devised to amplify and measure small amounts of acetyl-CoA formed during the enzyme reactions. Carnitine acetyltransferase was the most active enzyme in single nerve cell bodies and all layer samples, except for rabbit and mouse cerebellar white matter. Citrate synthetase was the lowest in single cell bodies. The activities of carnitine acetyltransferase and acetyl-CoA synthetase (656 and 89.8 mmoles of acetyl-CoA formed/kg of dry weight/h at 38°C) from dorsal root ganglion cells were about 2-fold higher than those from anterior horn cells. The activity of ATP citrate lyase (134mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) from anterior horn cells was approximately twice that from dorsal root ganglion cells. The activity of this enzyme was distributed in a wider range in anterior horn cells than dorsal root ganglion cells. The second highest activity (80.0 mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) of ATP citrate lyase was found in striatum where cholinergic interneurones are abundant. Relatively higher activities of this enzyme were found in cerebellar granular layer and white matter which are known to contain the cholinergic mossy fibers. These results suggested that cholinergic neurones contain higher activity of ATP citrate lyase which is thought to supply acetyl-CoA to choline acetyltransferase (EC 2.3.1.6) as a substrate to form acetylcholine.  相似文献   

5.
—The distribution of choline acetyltransferase (ChAc, EC 2.3.1.6) and l -glutamate 1-carboxylyase (glutamate decarboxylase, GAD, EC 4.1.1.15) was studied in serial frontal slices of the substantia nigra (SN) (pars compacta, PC; pars reticulata, PR; an intermediate region, IR) as well as in other brain areas from post mortem tissue of control and Parkinsonian patients. Within the SN from control brain ChAc and GAD activities showed a distinctive distribution: ChAc activity in PC was higher than in PR and IR by 427% and 253% respectively and within PC the enzyme activity in the rostral part exceeded that in the control part by 353%. The GAD activity in PC was higher by 41% than that in PR and within PC seemed to be higher in the caudal than in the rostral part. For both enzyme activities there were no significant differences between PR and IR or within these regions. In Parkinsonian brain both ChAc and GAD activities were reduced to 15-25% of controls in all 3 regions of the SN. The distinctive distribution of ChAc and GAD activity found in the SN of control brain was abolished: no difference was observed between the 3 regions. However, within PC the ChAc activity was lower in the medial than in the rostral part. Since nigral ChAc is possibly located in interneurons, the decrease in enzyme activity may be connected with the cell loss observed in the SN of Parkinsonian brain. By contrast, nigral GAD is probably contained in terminals of strio-nigral neurons and the decrease in enzyme activity in Parkinson's disease in the absence of striatal cell loss, may reflect a change in the functional state of these GABA neurons. Among various areas of control brains ChAc activity was highest in caudate nucleus and putamen while GAD was highest in SN. caudate nucleus, putamen and cerebral cortex. In Parkinsonian brain the most severe reduction in ChAc and GAD activities was found in the SN.  相似文献   

6.
The axoplasmic transport of aromatic l -amino acid decarboxylase and dopamine β-hydroxylase, two enzymes involved in the biosynthesis of catecholamines, was studied in rat sciatic nerve. The two enzymes exhibited markedly different axoplasmic flow characteristics, since dopamine β-hydroxylase activity accumulated on the proximal side of a ligation nearly three times as fast as aromatic l -amino acid decarboxylase activity. Distally dopamine β-hydroxylase activity remained essentially constant for 24 h, whereas aromatic l -amino acid decarboxylase activity fell precipitously. Evidence was obtained to rule out the possibility that differences in the rate of inactivation of the two enzymes could account for the different rates of accumulations observed. The conclusion, that aromatic L-amino acid decarboxylase and dopamine β-hydroxylase are transported in sympathetic nerve at different rates is discussed in relation to the biosynthesis of norepinephrine.  相似文献   

7.
8.
Fifteen farms in 1984 and twenty in 1985 were investigated forbreeding management, hygiene and parasitism. Farm hygiene didnot seem to play an important role on the breeding performancesin our samples. Nematodes were the most frequent parasites:Alloionema appendiculatum were equally prevalent among juvenileand adult snails whereas Angiostoma aspersa and Nemhelix bakeriwere found mostly in reproductive adults. The presence of nematodes,assessed by coproculture, was negatively related to breedingperformances  相似文献   

9.
Abstract— Choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) levels were measured quantitatively in samples from the archi- and paleocerebellar vermis (Larsell's Lobules IX c,d,-X, and Lobules VII-VIII, respectively) and from the cerebellar peduncles, nuclei and white matter of rat and guinea pig. Lesions to isolate archi- or paleocerebellar areas were made in some rats and the effect on enzyme levels and ultrastructure were studied. In the rat there was a striking correlation between the activity of ChAc and AChE in the different areas; thus in the archicerebellar cortex the levels of both enzymes were 3–4 times those in the paleocortex. Deafferentation caused a fall in ChAc and this practically paralleled the fall in AChE in the same area. The reduction in both enzymes was more pronounced in the archi- than in the paleocerebellar cortex. In the guinea pig the results were very different. The ChAc activity was much lower than in the rat and was equal in the archi- and paleocerebellum. The AChE activity was also uniform in the different areas but, in contrast to ChAc, was higher than in the rat.  相似文献   

10.
11.
Egg cannibalism by hatchlings has been demonstrated in somepulmonate land snails; this behaviour is promoted by a highhatching asynchrony within the egg-batch. Under laboratory conditions,the percentage of new-born snails Helix aspersa having cannibalisedunhatched eggs was not influenced by the soil factor: about70% of them ingested one egg within their first four days oflife whether soil was present or not. The propensity to eggcannibalism in hatchlings of H. aspersa increased with egg density.However, most of the new-born hatchlings consumed a single eggduring the four days following hatching, and only exceptionallytwo. The consumption of one egg increased the snails wet weightby 38.7% within four days. A weak ingestion of soil componentsalso occurred, but it induced a growth that was three-timesless than that due to the consumption of an egg. In addition,the survival of newly hatched snails maintained under non-dehydratingthermohygrometric conditions was high, even when they were submittedto four days food-deprivation. (Received 22 July 1999; accepted 24 November 1999)  相似文献   

12.
Abstract— Acetylcholine, choline and choline acetyltransferase activity were measured in the whole brains of normal and hypothyroid rats during development. At 1 day postpartum, brain acetylcholine was 73 per cent of adult levels. Propylthiouracil-induced hypothyroidism up to age 20 days did not alter brain acetylcholine concentrations, but at 30 days resulted in significantly decreased levels. At day 1, brain choline was 20 per cent higher than adult levels and decreased between days 8 and 10. In hypothyroid rats this phenomenon did not occur until days 15–20. At day 1 postnatally, choline acetyltransferase activity was only 7 per cent of adult levels, then between days 5 and 20 rose to 77 per cent of adult levels. Beginning at day 8, hypothyroidism resulted in significantly decreased enzyme levels. This effect could be reversed at day 17 by concurrent tri-iodothyronine substitution therapy. In hypothyroid rats, maximum brain choline acetyltransferase activity was 30 per cent less than normal adult levels.  相似文献   

13.
—DOPA and 5-hydroxytryptophan (5-HTP) are generally supposed to be decarboxylated in mammalian tissues by a single enzyme, the two activities being present in constant ratio through a variety of purification procedures. It has now been shown that the ratio of activity of the liver enzyme towards the two substrates can be altered by mild treatments, such as might be used in solubilization of brain preparations. DOPA decarboxylase activity was preferentially inactivated by sodium dodecyl sulphate treatment, and 5-HTP decarboxylation by urea. Previous reports that the two substrates show different pH optima but are mutually competitive, have been confirmed. The Km of the enzyme towards 5-HTP was lowest at pH 7.8 (the optimum pH for decarboxylation of this amino acid), but the variation with pH of the Km towards DOPA was unrelated to the pH optimum for decarboxylation. There appeared to be no relation between the probable ionization state of the substrates and the pH dependence of the enzyme. Studies on the binding characteristics of the enzyme for the two products, dopamine and serotonin, did not show any specific saturable binding. It is proposed that the enzyme has a complex active site, with separate affinity sites for the two substrates, adjacent to a single catalytic site.  相似文献   

14.
15.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

16.
本文用免疫组化双标法观察了神经生长因子受体(NGF-R)及胆碱乙酰转移酶(ChAT)免疫反应阳性神经元在成鼠基底前脑内的分布,结果发现嗅结节、隔内侧核、斜角带核、腹侧苍白球及基底大细胞核均有NGF-R及ChAT免疫反应阳性神经元.免疫组化双标染色发现,大部分免疫反应阳性神经元的NGF-R与ChAT共存,部分神经元呈单纯NGF-R或ChAT阳性,但这种NGF-R和ChAT的共存情况在不同区域不完全相同.在隔内侧核和斜角带核,大多数的NGF-R阳性神经元和ChAT阳性神经元共存,但在腹侧仓白球和基底大细胞核,两者共存的神经元较前两区为少.此外ChAT阳性神经元在尾壳核中分布较均匀,而NGF-R阳性神经元较少见.研究结果表明,大多数胆碱能神经元有NGF-R,提示NGF对胆碱能神经元的保护和激活作用,部分可能是通过直接与NGF受体的结合而发生作用.  相似文献   

17.
When reared at high densities, young Helix aspersa show lessshell growth, even if waste products are removed. They alsofeed less, and show increased mortality. It is suggested thatthese effects are linked to reduced activity. Juveniles showreduced activity in the presence of adults or their mucus. Mucusof adult Cepaca nemoralis also depresses the activity of bothadult and young Helix and Cepaea. * Present Address: Unit Zoologi, Universiti Kebangsaan Malaysia,Jalan Pantai Baru, Kuala Lumpur, West Malaysia. (Received 12 May 1981;  相似文献   

18.
19.
20.
Abstract— The distribution of GABA and enzymes involved in its metabolism was investigated in the different regions of the olfactory bulb and olfactory nucleus. The highest levels of GABA in the olfactory bulb were found in the layers rich in nerve terminals (31 μmol/g dry wt.). A similar distribution was found in the olfactory nucleus although the overall level of GABA was only a quarter of that measured in the bulb. Glutamic acid decarboxylase (GAD) levels in the various layers of the olfactory nucleus were similar in distribution to those of GABA. However, the correlation between GAD and GABA did not hold for the olfactory bulb, particularly in the granule cell layer and the medulla. The activities of GAD and the levels of GABA are significantly higher in the bulb than in the nucleus but succinic acid scmialdehyde dehydrogenase and GABA aminotransaminase activities are almost identical in both regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号