首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general statistical framework is proposed for comparing linear models of spatial process and pattern. A spatial linear model for nested analysis of variance can be based on either fixed effects or random effects. Greig-Smith (1952) originally used a fixed effects model, but there are also examples of random effects models in the soil science literature. Assuming intrinsic stationarity for a linear model, the expectations of a spatial nested ANOVA and two term local variance (TTLV, Hill 1973) are functions of the variogram, and several examples are given. Paired quadrat variance (PQV, Ludwig & Goodall 1978) is a variogram estimator which can be used to approximate TTLV, and we provide an example from ecological data. Both nested ANOVA and TTLV can be seen as weighted lag-1 variogram estimators that are functions of support, rather than distance. We show that there are two unbiased estimators for the variogram under aggregation, and computer simulation shows that the estimator with smaller variance depends on the process autocorrelation.  相似文献   

2.
In sample surveys, it is usual to make use of auxiliary information to increase the precision of the estimators. We propose a new chain ratio estimator and regression estimator of a finite population mean using linear combination of two auxiliary variables and obtain the mean squared error (MSE) equations for the proposed estimators. We find theoretical conditions that make proposed estimators more efficient than the traditional multivariate ratio estimator and the regression estimator using information of two auxiliary variables.  相似文献   

3.
In this article we construct and study estimators of the causal effect of a time-dependent treatment on survival in longitudinal studies. We employ a particular marginal structural model (MSM), proposed by Robins (2000), and follow a general methodology for constructing estimating functions in censored data models. The inverse probability of treatment weighted (IPTW) estimator of Robins et al. (2000) is used as an initial estimator and forms the basis for an improved, one-step estimator that is consistent and asymptotically linear when the treatment mechanism is consistently estimated. We extend these methods to handle informative censoring. The proposed methodology is employed to estimate the causal effect of exercise on mortality in a longitudinal study of seniors in Sonoma County. A simulation study demonstrates the bias of naive estimators in the presence of time-dependent confounders and also shows the efficiency gain of the IPTW estimator, even in the absence such confounding. The efficiency gain of the improved, one-step estimator is demonstrated through simulation.  相似文献   

4.
Copt S  Heritier S 《Biometrics》2007,63(4):1045-1052
Mixed linear models are commonly used to analyze data in many settings. These models are generally fitted by means of (restricted) maximum likelihood techniques relying heavily on normality. The sensitivity of the resulting estimators and related tests to this underlying assumption has been identified as a weakness that can even lead to wrong interpretations. Very recently a highly robust estimator based on a scale estimate, that is, an S-estimator, has been proposed for general mixed linear models. It has the advantage of being easy to compute and allows the computation of a robust score test. However, this proposal cannot be used to define a likelihood ratio type test that is certainly the most direct route to robustify an F-test. As the latter is usually a key tool of hypothesis testing in mixed linear models, we propose two new robust estimators that allow the desired extension. They also lead to resistant Wald-type tests useful for testing contrasts and covariate effects. We study their properties theoretically and by means of simulations. The analysis of a real data set illustrates the advantage of the new approach in the presence of outlying observations.  相似文献   

5.
Inverse-probability-weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of interest by constructing a pseudopopulation in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse-probability-weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at nearly n 1 / 3 $ n^{-1/3}$ -rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse-probability-weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.  相似文献   

6.
This paper considers a Stein‐rule mixed regression estimator for estimating a normal linear regression model in the presence of stochastic linear constraints. We derive the small disturbance asymptotic bias and risk of the proposed estimator, and analytically compare its risk with other related estimators. A Monte‐Carlo experiment investigates the empirical risk performance of the proposed estimator.  相似文献   

7.
The problem of estimating the population mean using an auxiliary information has been dealt with in literature quite extensively. Ratio, product, linear regression and ratio-type estimators are well known. A class of ratio-cum-product-type estimator is proposed in this paper. Its bias and variance to the first order of approximation are obtained. For an appropriate weight ‘a’ and good range of α-values, it is found that the proposed estimator is superior than a set of estimators (i.e., sample mean, usual ratio and product estimators, SRIVASTAVA's (1967) estimator, CHAKRABARTY's (1979) estimator and a product-type estimator) which are, in fact, the particular cases of it. At optimum value of α, the proposed estimator is as efficient as linear regression estimator.  相似文献   

8.
Semiparametric smoothing methods are usually used to model longitudinal data, and the interest is to improve efficiency for regression coefficients. This paper is concerned with the estimation in semiparametric varying‐coefficient models (SVCMs) for longitudinal data. By the orthogonal projection method, local linear technique, quasi‐score estimation, and quasi‐maximum likelihood estimation, we propose a two‐stage orthogonality‐based method to estimate parameter vector, coefficient function vector, and covariance function. The developed procedures can be implemented separately and the resulting estimators do not affect each other. Under some mild conditions, asymptotic properties of the resulting estimators are established explicitly. In particular, the asymptotic behavior of the estimator of coefficient function vector at the boundaries is examined. Further, the finite sample performance of the proposed procedures is assessed by Monte Carlo simulation experiments. Finally, the proposed methodology is illustrated with an analysis of an acquired immune deficiency syndrome (AIDS) dataset.  相似文献   

9.
M C Wu  K R Bailey 《Biometrics》1989,45(3):939-955
A general linear regression model for the usual least squares estimated rate of change (slope) on censoring time is described as an approximation to account for informative right censoring in estimating and comparing changes of a continuous variable in two groups. Two noniterative estimators for the group slope means, the linear minimum variance unbiased (LMVUB) estimator and the linear minimum mean squared error (LMMSE) estimator, are proposed under this conditional model. In realistic situations, we illustrate that the LMVUB and LMMSE estimators, derived under a simple linear regression model, are quite competitive compared to the pseudo maximum likelihood estimator (PMLE) derived by modeling the censoring probabilities. Generalizations to polynomial response curves and general linear models are also described.  相似文献   

10.
We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.  相似文献   

11.
In sample surveys, it is usual to make use of auxiliary information to increase the precision of estimators. We propose a new exponential ratio-type estimator of a finite population mean using linear combination of two auxiliary variables and obtain mean square error (MSE) equation for proposed estimator. We find theoretical conditions that make proposed estimator more efficient than traditional multivariate ratio estimator using information of two auxiliary variables, the estimator of Bahl and Tuteja and the estimator proposed by Abu-Dayeh et al. In addition, we support these theoretical results with the aid of two numerical examples.  相似文献   

12.
We consider the estimation of the scaled mutation parameter θ, which is one of the parameters of key interest in population genetics. We provide a general result showing when estimators of θ can be improved using shrinkage when taking the mean squared error as the measure of performance. As a consequence, we show that Watterson’s estimator is inadmissible, and propose an alternative shrinkage-based estimator that is easy to calculate and has a smaller mean squared error than Watterson’s estimator for all possible parameter values 0<θ<. This estimator is admissible in the class of all linear estimators. We then derive improved versions for other estimators of θ, including the MLE. We also investigate how an improvement can be obtained both when combining information from several independent loci and when explicitly taking into account recombination. A simulation study provides information about the amount of improvement achieved by our alternative estimators.  相似文献   

13.
Gray RJ 《Biometrics》2000,56(2):571-576
An estimator of the regression parameters in a semiparametric transformed linear survival model is examined. This estimator consists of a single Newton-like update of the solution to a rank-based estimating equation from an initial consistent estimator. An automated penalized likelihood algorithm is proposed for estimating the optimal weight function for the estimating equations and the error hazard function that is needed in the variance estimator. In simulations, the estimated optimal weights are found to give reasonably efficient estimators of the regression parameters, and the variance estimators are found to perform well. The methodology is applied to an analysis of prognostic factors in non-Hodgkin's lymphoma.  相似文献   

14.
Y. X. Fu 《Genetics》1994,138(4):1375-1386
Mutations resulting in segregating sites of a sample of DNA sequences can be classified by size and type and the frequencies of mutations of different sizes and types can be inferred from the sample. A framework for estimating the essential parameter θ = 4Nu utilizing the frequencies of mutations of various sizes and types is developed in this paper, where N is the effective size of a population and μ is mutation rate per sequence per generation. The framework is a combination of coalescent theory, general linear model and Monte-Carlo integration, which leads to two new estimators θ(ξ) and θ(η) as well as a general Watterson''s estimator θ(K) and a general Tajima''s estimator θ(π). The greatest strength of the framework is that it can be used under a variety of population models. The properties of the framework and the four estimators θ(K), θ(π), θ(ξ) and θ(η) are investigated under three important population models: the neutral Wright-Fisher model, the neutral model with recombination and the neutral Wright''s finite-islands model. Under all these models, it is shown that θ(ξ) is the best estimator among the four even when recombination rate or migration rate has to be estimated. Under the neutral Wright-Fisher model, it is shown that the new estimator θ(ξ) has a variance close to a lower bound of variances of all unbiased estimators of θ which suggests that θ(ξ) is a very efficient estimator.  相似文献   

15.
Mancl and DeRouen (2001, Biometrics57, 126-134) and Kauermann and Carroll (2001, JASA96, 1387-1398) proposed alternative bias-corrected covariance estimators for generalized estimating equations parameter estimates of regression models for marginal means. The finite sample properties of these estimators are compared to those of the uncorrected sandwich estimator that underestimates variances in small samples. Although the formula of Mancl and DeRouen generally overestimates variances, it often leads to coverage of 95% confidence intervals near the nominal level even in some situations with as few as 10 clusters. An explanation for these seemingly contradictory results is that the tendency to undercoverage resulting from the substantial variability of sandwich estimators counteracts the impact of overcorrecting the bias. However, these positive results do not generally hold; for small cluster sizes (e.g., <10) their estimator often results in overcoverage, and the bias-corrected covariance estimator of Kauermann and Carroll may be preferred. The methods are illustrated using data from a nested cross-sectional cluster intervention trial on reducing underage drinking.  相似文献   

16.
Molecular markers allow to estimate the pairwise relatedness between the members of a breeding pool when their selection history is no longer available or has become too complex for a classical pedigree analysis. The field of population genetics has several estimation procedures at its disposal, but when the genotyped individuals are highly selected inbred lines, their application is not warranted as the theoretical assumptions on which these estimators were built, usually linkage equilibrium between marker loci or even Hardy–Weinberg equilibrium, are not met. An alternative approach requires the availability of a genotyped reference set of inbred lines, which allows to correct the observed marker similarities for their inherent upward bias when used as a coancestry measure. However, this approach does not guarantee that the resulting coancestry matrix is at least positive semi-definite (psd), a necessary condition for its use as a covariance matrix. In this paper we present the weighted alikeness in state (WAIS) estimator. This marker-based coancestry estimator is compared to several other commonly applied relatedness estimators under realistic hybrid breeding conditions in a number of simulations. We also fit a linear mixed model to phenotypical data from a commercial maize breeding programme and compare the likelihood of the different variance structures. WAIS is shown to be psd which makes it suitable for modelling the covariance between genetic components in linear mixed models involved in breeding value estimation or association studies. Results indicate that it generally produces a low root mean squared error under different breeding circumstances and provides a fit to the data that is comparable to that of several other marker-based alternatives. Recommendations for each of the examined coancestry measures are provided.  相似文献   

17.
In observational cohort studies with complex sampling schemes, truncation arises when the time to event of interest is observed only when it falls below or exceeds another random time, that is, the truncation time. In more complex settings, observation may require a particular ordering of event times; we refer to this as sequential truncation. Estimators of the event time distribution have been developed for simple left-truncated or right-truncated data. However, these estimators may be inconsistent under sequential truncation. We propose nonparametric and semiparametric maximum likelihood estimators for the distribution of the event time of interest in the presence of sequential truncation, under two truncation models. We show the equivalence of an inverse probability weighted estimator and a product limit estimator under one of these models. We study the large sample properties of the proposed estimators and derive their asymptotic variance estimators. We evaluate the proposed methods through simulation studies and apply the methods to an Alzheimer's disease study. We have developed an R package, seqTrun , for implementation of our method.  相似文献   

18.
In the era of big data, univariate models have widely been used as a workhorse tool for quickly producing marginal estimators; and this is true even when in a high-dimensional dense setting, in which many features are “true,” but weak signals. Genome-wide association studies (GWAS) epitomize this type of setting. Although the GWAS marginal estimator is popular, it has long been criticized for ignoring the correlation structure of genetic variants (i.e., the linkage disequilibrium [LD] pattern). In this paper, we study the effects of LD pattern on the GWAS marginal estimator and investigate whether or not additionally accounting for the LD can improve the prediction accuracy of complex traits. We consider a general high-dimensional dense setting for GWAS and study a class of ridge-type estimators, including the popular marginal estimator and the best linear unbiased prediction (BLUP) estimator as two special cases. We show that the performance of GWAS marginal estimator depends on the LD pattern through the first three moments of its eigenvalue distribution. Furthermore, we uncover that the relative performance of GWAS marginal and BLUP estimators highly depends on the ratio of GWAS sample size over the number of genetic variants. Particularly, our finding reveals that the marginal estimator can easily become near-optimal within this class when the sample size is relatively small, even though it ignores the LD pattern. On the other hand, BLUP estimator has substantially better performance than the marginal estimator as the sample size increases toward the number of genetic variants, which is typically in millions. Therefore, adjusting for the LD (such as in the BLUP) is most needed when GWAS sample size is large. We illustrate the importance of our results by using the simulated data and real GWAS.  相似文献   

19.
Three new improved regression estimators of heritability viz. modified range restricted estimator, minimum quadratic loss estimator and minimax linear restricted estimator are proposed. In addition, these estimators are illustrated and compared numerically with the existing restricted estimator based on linear stochastic constraint.  相似文献   

20.
 Multivariate analysis is a branch of statistics that successfully exploits the powerful tools of linear algebra to obtain a fairly comprehensive theory of estimation. The purpose of this paper is to explore to what extent a linear theory of estimation can be developed in the context of coalescent models used in the analysis of DNA polymorphism. We consider a large class of coalescent models, of which the neutral infinite sites model is one example. In the process, we discover several limitations of linear estimators that are quite distinct from those in the classical theory. In particular, we prove that there does not exist a uniformly BLUE (best linear unbiased estimator) for the scaled mutation parameter, under the assumptions of the neutral model of evolution. In fact, we show that no linear estimator performs uniformly better than the Watterson (1975) method based on the total number of segregating sites. For certain coalescent models, the segregating-sites estimator is actually optimal. The general conclusion is the following. If genealogical information is useful for estimating the rate of evolution, then there is no optimal linear method. If there is an optimal linear method, then no information other than the total number of segregating sites is needed. Received: 29 July 1998 / Revised version: 9 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号