首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATPase Vps4 belongs to the type-I AAA family of proteins. Vps4 functions together with a group of proteins referred to as ESCRTs in membrane deformation and fission events. These cellular functions include vesicle formation at the endosome, cytokinesis and viral budding. The highly dynamic quaternary structure of Vps4 and its interactions with a network of regulators and co-factors has made the analysis of this ATPase challenging. Nevertheless, recent advances in the understanding of the cell biology of Vps4 together with structural information and in vitro studies are guiding mechanistic models of this ATPase.  相似文献   

2.
During endocytic transport, specific integral membrane proteins are sorted into intraluminal vesicles that bud from the limiting membrane of the endosome. This process, known as multivesicular body (MVB) sorting, is important for several important biological processes. Moreover, components of the MVB sorting machinery are implicated in virus budding. During MVB sorting, a cargo protein recruits components of the MVB sorting machinery from cytoplasmic pools and these sequentially assemble on the endosome. Disassembly of these proteins and recycling into the cytoplasm is critical for MVB sorting. Vacuolar protein sorting 4 (Vps4) is an AAA (ATPase associated with a variety of cellular activities) ATPase which has been proposed to play a critical role in disassembly of the MVB sorting machinery. However, the mechanism by which it disassembles the complex is not clear. Vps4 contains an N-terminal microtubule interacting and trafficking (MIT) domain, which has previously been shown to be required for recruitment to endosomes, and a single AAA ATPase domain, the activity of which is required for Vps4 function. In this study we have systematically characterized the interaction of Vps4 with other components of the MVB sorting machinery. We demonstrate that Vps4 interacts directly with Vps2 and Bro1. We also show that a subset of Vps4 interactions is regulated by ATP hydrolysis, and one interaction is regulated by ATP binding. Finally, we show that most proteins interact with the Vps4 MIT domain. Our studies indicate that the MIT domain has a dual role in substrate binding and recruitment to endosomes and indicate that Vps4 disassembles the MVB sorting machinery by direct effects on multiple proteins.  相似文献   

3.
The cellular ESCRT (endosomal sorting complexes required for transport) pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including the human immunodeficiency virus. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear. Here, we report that although some mutant Vps4 proteins form dodecameric assemblies, active wild-type Saccharomyces cerevisiae and Sulfolobus solfataricus Vps4 enzymes can form hexamers in the presence of ATP and ADP, as assayed by size-exclusion chromatography and equilibrium analytical ultracentrifugation. The Vta1p activator binds hexameric yeast Vps4p without changing the oligomeric state of Vps4p, implying that the active Vta1p–Vps4p complex also contains a single hexameric ring. Additionally, we report crystal structures of two different archaeal Vps4 homologs, whose structures and lattice interactions suggest a conserved mode of oligomerization. Disruption of the proposed hexamerization interface by mutagenesis abolished the ATPase activity of archaeal Vps4 proteins and blocked Vps4p function in S. cerevisiae. These data challenge the prevailing model that active Vps4 is a double-ring dodecamer, and argue that, like other type I AAA ATPases, Vps4 functions as a single ring with six subunits.  相似文献   

4.
Vajjhala PR  Wong JS  To HY  Munn AL 《The FEBS journal》2006,273(11):2357-2373
Endocytic and biosynthetic trafficking pathways to the lysosome/vacuole converge at the prevacuolar endosomal compartment. During transport through this compartment, integral membrane proteins that are destined for delivery to the lysosome/vacuole lumen undergo multivesicular body (MVB) sorting into internal vesicles formed by invagination of the endosomal limiting membrane. Vps4 is an AAA family ATPase which plays a key role in MVB sorting and facilitates transport through endosomes. It possesses an N-terminal microtubule interacting and trafficking domain required for recruitment to endosomes and an AAA domain with an ATPase catalytic site. The recently solved 3D structure revealed a beta domain, which protrudes from the AAA domain, and a final C-terminal alpha-helix. However, the in vivo roles of these domains are not known. In this study, we have identified motifs in these domains that are highly conserved between yeast and human Vps4. We have mutated these motifs and studied the effect on yeast Vps4p function in vivo and in vitro. We show that the beta domain of the budding yeast Vps4p is not required for recruitment to endosomes, but is essential for all Vps4p endocytic functions in vivo. We also show that the beta domain is required for Vps4p homotypic interaction and for full ATPase activity. In addition, it is required for interaction with Vta1p, which works in concert with Vps4p in vivo. Our studies suggest that assembly of a Vps4p oligomeric complex with full ATPase activity that interacts with Vta1p is essential for normal endosome function.  相似文献   

5.
Vps4 is a key enzyme that functions in endosomal protein trafficking, cytokinesis, and retroviral budding. Vps4 activity is regulated by its recruitment from the cytoplasm to ESCRT-III, where the protein oligomerizes into an active ATPase. The recruitment and oligomerization steps are mediated by a complex network of at least 12 distinct interactions between Vps4, ESCRT-III, Ist1, Vta1, and Did2. The order of events leading to active, ESCRT-III–associated Vps4 is poorly understood. In this study we present a systematic in vivo analysis of the Vps4 interaction network. The data demonstrated a high degree of redundancy in the network. Although no single interaction was found to be essential for the localization or activity of Vps4, certain interactions proved more important than others. The most significant among these were the binding of Vps4 to Vta1 and to the ESCRT-III subunits Vps2 and Snf7. In our model we propose the formation of a recruitment complex in the cytoplasm that is composed of Did2-Ist1-Vps4, which upon binding to ESCRT-III recruits Vta1. Vta1 in turn is predicted to cause a rearrangement of the Vps4 interactions that initiates the assembly of the active Vps4 oligomer.  相似文献   

6.
The multivesicular body (MVB) pathway functions in multiple cellular processes including cell surface receptor down-regulation and viral budding from host cells. An important step in the MVB pathway is the correct sorting of cargo molecules, which requires the assembly and disassembly of endosomal sorting complexes required for transport (ESCRTs) on the endosomal membrane. Disassembly of the ESCRTs is catalyzed by ATPase associated with various cellular activities (AAA) protein Vps4. Vps4 contains a single AAA domain and undergoes ATP-dependent quaternary structural change to disassemble the ESCRTs. Structural and biochemical analyses of the Vps4 ATPase reaction cycle are reported here. Crystal structures of Saccharomyces cerevisiae Vps4 in both the nucleotide-free form and the ADP-bound form provide the first structural view illustrating how nucleotide binding might induce conformational changes within Vps4 that lead to oligomerization and binding to its substrate ESCRT-III subunits. In contrast to previous models, characterization of the Vps4 structure now supports a model where the ground state of Vps4 in the ATPase reaction cycle is predominantly a monomer and the activated state is a dodecamer. Comparison with a previously reported human VPS4B structure suggests that Vps4 functions in the MVB pathway via a highly conserved mechanism supported by similar protein-protein interactions during its ATPase reaction cycle.  相似文献   

7.
The late Golgi of the yeast Saccharomyces cerevisiae receives membrane traffic from the secretory pathway as well as retrograde traffic from post-Golgi compartments, but the machinery that regulates these vesicle-docking and fusion events has not been characterized. We have identified three components of a novel protein complex that is required for protein sorting at the yeast late Golgi compartment. Mutation of VPS52, VPS53, or VPS54 results in the missorting of 70% of the vacuolar hydrolase carboxypeptidase Y as well as the mislocalization of late Golgi membrane proteins to the vacuole, whereas protein traffic through the early part of the Golgi complex is unaffected. A vps52/53/54 triple mutant strain is phenotypically indistinguishable from each of the single mutants, consistent with the model that all three are required for a common step in membrane transport. Native coimmunoprecipitation experiments indicate that Vps52p, Vps53p, and Vps54p are associated in a 1:1:1 complex that sediments as a single peak on sucrose velocity gradients. This complex, which exists both in a soluble pool and as a peripheral component of a membrane fraction, colocalizes with markers of the yeast late Golgi by immunofluorescence microscopy. Together, the phenotypic and biochemical data suggest that VPS52, VPS53, and VPS54 are required for the retrograde transport of Golgi membrane proteins from an endosomal/prevacuolar compartment. The Vps52/53/54 complex joins a growing list of distinct multisubunit complexes that regulate membrane-trafficking events.  相似文献   

8.
M Babst  T K Sato  L M Banta    S D Emr 《The EMBO journal》1997,16(8):1820-1831
In a late-Golgi compartment of the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y (CPY) are actively sorted away from the secretory pathway and transported to the vacuole via a pre-vacuolar, endosome-like intermediate. The vacuolar protein sorting (vps) mutant vps4 accumulates vacuolar, endocytic and late-Golgi markers in an aberrant multilamellar pre-vacuolar compartment. The VPS4 gene has been cloned and found to encode a 48 kDa protein which belongs to the protein family of AAA-type ATPases. The Vps4 protein was purified and shown to exhibit an N-ethylmaleimide-sensitive ATPase activity. A single amino acid change within the AAA motif of Vps4p yielded a protein that lacked ATPase activity and did not complement the protein sorting or morphological defects of the vps4 delta1 mutant. Indeed, when expressed at normal levels in wild-type cells, the mutant vps4 gene acted as a dominant-negative allele. The phenotypic characterization of a temperature-sensitive vps4 allele showed that the immediate consequence of loss of Vps4p function is a defect in vacuolar protein delivery. In this mutant, precursor CPY was not secreted but instead accumulated in an intracellular compartment, presumably the pre-vacuolar endosome. Electron microscopy revealed that upon temperature shift, exaggerated stacks of curved cisternal membranes (aberrant endosome) also accumulated in the vps4ts mutant. Based on these and other observations, we propose that Vps4p function is required for efficient transport out of the pre-vacuolar endosome.  相似文献   

9.
The AAA-type ATPase Vps4 functions with components of the ESCRT (endosomal sorting complex required for transport) machinery in membrane fission events that are essential for endosomal maturation, cytokinesis, and the formation of retroviruses. A key step in these events is the assembly of monomeric Vps4 into the active ATPase complex, which is aided in part by binding of Vps4 via its N-terminal MIT (microtubule interacting and trafficking) domain to its substrate ESCRT-III. We found that the 40-amino acid linker region between the MIT and the ATPase domain of Vps4 is not required for proper function but plays a role in regulating Vps4 assembly and ATPase activity. Deletion of the linker is expected to bring the MIT domains into close proximity to the central pore of the Vps4 complex. We propose that this localization of the MIT domain in linker-deleted Vps4 mimics a repositioning of the MIT domain normally caused by binding of Vps4 to ESCRT-III. This structure would allow the Vps4 complex to engage ESCRT-III subunits with both the pore and the MIT domain simultaneously, which might be essential for the ATP-driven disassembly of ESCRT-III.  相似文献   

10.
The retromer complex is a conserved cytoplasmic coat complex that mediates the endosome-to-Golgi retrieval of vacuole/lysosome hydrolase receptors in yeast and mammals. The recognition of cargo proteins by the retromer is performed by the Vps35p/VPS35 (where Vps is vacuolar protein sorting) component, which together with Vps26p/VPS26 and Vps29p/VPS29, forms the cargo-selective subcomplex. In this report, we have identified a highly-conserved region of Vps35p/VPS35 that is essential for the interaction with Vps26p/VPS26 and for assembly of the retromer complex. Mutation of residues within the conserved region results in Vps35p/VPS35 mutants, which cannot bind to Vps26p/VPS26 and are not efficiently targeted to the endosomal membrane. These data implicate Vps26p/VPS26 in regulating Vps35p/VPS35 membrane association and therefore suggest a role for Vps26p/VPS26 in cargo recognition.  相似文献   

11.
In yeast, the Class C Vps protein complex (C-Vps complex), composed of Vps11, Vps16, Vps18, and Vps33, functions in Golgi-to-vacuole protein transport. In this study, we characterized and purified this complex and identified its interaction with the syntaxin homolog Vam3. Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole. The C-Vps complex does not bind to Vam3-Vti1-Vam7 paired SNARE complexes but instead binds to unpaired Vam3. Antibodies to a component of this complex inhibited in vitro vacuole-to-vacuole fusion. Furthermore, temperature-conditional mutations in the Class C VPS genes destabilized Vam3-Vti1-Vam7 pairing. Therefore, we propose that the C-Vps complex associates with unpaired (activated) Vam3 to mediate the assembly of trans-SNARE complexes during both vesicle docking/fusion and vacuole-to-vacuole fusion.  相似文献   

12.
Cytoplasmic dynein transports various cellular cargoes including early endosomes, but how dynein is linked to early endosomes is unclear. We find that the Aspergillus nidulans orthologue of the p25 subunit of dynactin is critical for dynein-mediated early endosome movement but not for dynein-mediated nuclear distribution. In the absence of NUDF/LIS1, p25 deletion abolished the localization of dynein-dynactin to the hyphal tip where early endosomes abnormally accumulate but did not prevent dynein-dynactin localization to microtubule plus ends. Within the dynactin complex, p25 locates at the pointed end of the Arp1 filament with Arp11 and p62, and our data suggest that Arp11 but not p62 is important for p25-dynactin association. Loss of either Arp1 or p25 significantly weakened the physical interaction between dynein and early endosomes, although loss of p25 did not apparently affect the integrity of the Arp1 filament. These results indicate that p25, in conjunction with the rest of the dynactin complex, is important for dynein-early endosome interaction.  相似文献   

13.
We have characterized LUV1/RKI1/TCS3/VPS54, a novel yeast gene required to maintain normal vacuolar morphology. The luv1 mutant was identified in a genetic screen for mutants requiring the phosphatase calcineurin for vegetative growth. luv1 mutants lack a morphologically intact vacuole and instead accumulate small vesicles that are acidified and contain the vacuolar proteins alkaline phosphatase and carboxypeptidase Y and the vacuolar membrane H(+)-ATPase. Endocytosis appears qualitatively normal in luv1 mutants, but some portion (28%) of carboxypeptidase Y is secreted. luv1 mutants are sensitive to several ions (Zn(2+), Mn(2+), and Cd(2+)) and to pH extremes. These mutants are also sensitive to hygromycin B, caffeine, and FK506, a specific inhibitor of calcineurin. Some vacuolar protein-sorting mutants display similar drug and ion sensitivities, including sensitivity to FK506. Luv1p sediments at 100,000 x g and can be solubilized by salt or carbonate, indicating that it is a peripheral membrane protein. A Green Fluorescent Protein-Luv1 fusion protein colocalizes with the dye FM 4-64 at the endosome, and hemagglutinin-tagged Luv1p colocalizes with the trans-Golgi network/endosomal protease Kex2p. Computer analysis predicts a short coiled-coil domain in Luv1p. We propose that this protein maintains traffic through or the integrity of the early endosome and that this function is required for proper vacuolar morphology.  相似文献   

14.
vps33 mutants missort and secrete multiple vacuolar hydrolases and exhibit extreme defects in vacuolar morphology. Toward a molecular understanding of the role of the VPS33 gene in vacuole biogenesis, we have cloned this gene from a yeast genomic library by complementation of a temperature-sensitive vps33 mutation. Gene disruption demonstrated that VPS33 was not essential but was required for growth at high temperatures. At the permissive temperature, vps33 null mutants exhibited defects in vacuolar protein localization and vacuole morphology similar to those seen in most of the original mutant alleles. Sequence analysis revealed a putative open reading frame sufficient to encode a protein of 691 amino acids. Hydropathy analysis indicated that the deduced product of the VPS33 gene is generally hydrophilic, contains no obvious signal sequence or transmembrane domains, and is therefore unlikely to enter the secretory pathway. Polyclonal antisera raised against TrpE-Vps33 fusion proteins recognized a protein in yeast cells of the expected molecular weight, approximately 75,000. In cell fractionation studies, Vps33p behaved as a cytosolic protein. The predicted VPS33 gene product possessed sequence similarity with a number of ATPases and ATP-binding proteins specifically in their ATP-binding domains. One vps33 temperature-sensitive mutant contained a missense mutation near this region of sequence similarity; the mutation resulted in a Leu-646----Pro substitution in Vps33p. This temperature-sensitive mutant strain contained normal vacuoles at the permissive temperature but lacked vacuoles specifically in the bud at the nonpermissive temperature. Our data suggest that Vps33p acts in the cytoplasm to facilitate Golgi-to-vacuole protein delivery. We propose that as a consequence of the vps33 protein-sorting defects, abnormalities in vacuolar morphology and vacuole assembly result.  相似文献   

15.
16.
N J Bryant  D E James 《The EMBO journal》2001,20(13):3380-3388
Sec1p-like/Munc-18 (SM) proteins bind to t-SNAREs and inhibit ternary complex formation. Paradoxically, the absence of SM proteins does not result in constitutive membrane fusion. Here, we show that in yeast cells lacking the SM protein Vps45p, the t-SNARE Tlg2p is down-regulated, to undetectable levels, by rapid proteasomal degradation. In the absence of Vps45p, Tlg2p can be stabilized through abolition of proteasome activity. Surprisingly, the stabilized Tlg2p was targeted to the correct intracellular location. However, the stabilized Tlg2p is non-functional and unable to bind its cognate SNARE binding partners, Tlg1p and Vti1p, in the absence of Vps45p. A truncation mutant lacking the first 230 residues of Tlg2p no longer bound Vps45p but was able to form complexes with Tlg1p and Vti1p in the absence of the SM protein. These data provide us with two valuable insights into the function of SM proteins. First, SM proteins act as chaperone-like molecules for their cognate t-SNAREs. Secondly, SM proteins play an essential role in the activation process allowing their cognate t-SNARE to participate in ternary complex formation.  相似文献   

17.
Skp1p is an essential component of SCF-type E3 ubiquitin ligase complexes and associates with these through binding to F-box proteins. Skp1p also binds F-box proteins in a number of non-SCF complexes. The Skp1p-associated yeast protein Soi3p/Rav1p (hereafter referred to as Rav1p) is a component of the RAVE complex required for regulated assembly of vacuolar ATPase (V-ATPase). Rav1p is also involved in transport of TGN proteins and endocytic cargo between early and late endosomes. To evaluate the role of Skp1p in the RAVE complex, we made use of the fact that overexpression of Rav1p is toxic because it sequesters Skp1p from essential interactions. We isolated a separation of function allele of SKP1, skp1(Asn108Tyr), that completely abrogated the Rav1p interaction but allowed Skp1p to perform other essential cellular functions. Cells containing the skp1(Asn108Tyr) allele as the sole source of Skp1p exhibited normal V-ATPase assembly and activity. However, in the skp1(Asn108Tyr) mutant strain, the membrane-associated pool of Rav1-green fluorescent protein was increased, suggesting that Skp1p is important for the release of Rav1p from endosomal membranes where it functions in V-ATPase assembly. Thus, although part of the RAVE complex, Skp1p does not appear to be involved in V-ATPase assembly but instead in the cycling of the complex off membranes. This work also provides a generalizable approach to defining the roles of interactions of Skp1p with individual F-box proteins through the isolation of special alleles of SKP1.  相似文献   

18.
The mouse SKD1 is an AAA-type ATPase homologous to the yeast Vps4p implicated in transport from endosomes to the vacuole. To elucidate a possible role of SKD1 in mammalian endocytosis, we generated a mutant SKD1, harboring a mutation (E235Q) that is equivalent to the dominant negative mutation (E233Q) in Vps4p. Overexpression of the mutant SKD1 in cultured mammalian cells caused defect in uptake of transferrin and low-density lipoprotein. This was due to loss of their receptors from the cell surface. The decrease of the surface transferrin receptor (TfR) was correlated with expression levels of the mutant protein. The mutant protein displayed a perinuclear punctate distribution in contrast to a diffuse pattern of the wild-type SKD1. TfR, the lysosomal protein lamp-1, endocytosed dextran, and epidermal growth factor but not markers for the secretory pathway were accumulated in the mutant SKD1-localized compartments. Degradation of epidermal growth factor was inhibited. Electron microscopy revealed that the compartments were exaggerated multivesicular vacuoles with numerous tubulo-vesicular extensions containing TfR and endocytosed horseradish peroxidase. The early endosome antigen EEA1 was also redistributed to these aberrant membranes. Taken together, our findings suggest that SKD1 regulates morphology of endosomes and membrane traffic through them.  相似文献   

19.
Membrane proteins that are degraded in the vacuole of Saccharomyces cerevisiae are sorted into discrete intralumenal vesicles, analogous to the internal membranes of multi-vesiculated bodies (MVBs). Recently, it has shown that the attachment of ubiquitin (Ub) mediates sorting into lumenal membranes. We describe a complex of Vps27p and Hse1p that localizes to endosomal compartments and is required for the recycling of Golgi proteins, formation of lumenal membranes and sorting of ubiquitinated proteins into those membranes. The Vps27p-Hse1p complex binds to Ub and requires multiple Ub Interaction Motifs (UIMs). Mutation of these motifs results in specific defects in the sorting of ubiquitinated proteins into the vacuolar lumen. However, the recycling of Golgi proteins and the generation of lumenal membranes proceeds normally in Delta UIM mutants. These data support a model in which the Vps27p-Hse1p complex has multiple functions at the endosome, one of which is as a sorting receptor for ubiquitinated membrane proteins destined for degradation.  相似文献   

20.
Rab5 GTPases are key regulators of protein trafficking through the early stages of the endocytic pathway. The yeast Rab5 ortholog Vps21p is activated by its guanine nucleotide exchange factor Vps9p. Here we show that Vps9p binds ubiquitin and that the CUE domain is necessary and sufficient for this interaction. Vps9p ubiquitin binding is required for efficient endocytosis of Ste3p but not for the delivery of the biosynthetic cargo carboxypeptidase Y to the vacuole. In addition, Vps9p is itself monoubiquitylated. Ubiquitylation is dependent on a functional CUE domain and Rsp5p, an E3 ligase that participates in cell surface receptor endocytosis. These findings define a new ubiquitin binding domain and implicate ubiquitin as a modulator of Vps9p function in the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号