首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chemical studies of the Chinese herb Corydalis saxicola Bunting led to the isolation and identification of 14 alkaloids, 1-14. Seven of these compounds, 4-9 and 11, were obtained from this plant for the first time. Feruloylagmatine (7) is the first guanidine-type alkaloid to be identified in the family Papaveraceae and in dicotyledonous plants. All of the isolated compounds were assayed for inhibitory activity against human DNA topoisomerase I. A DNA cleavage assay demonstrated that these alkaloids specifically inhibit topoisomerase through stabilization of the enzyme-DNA complex. Among the isolated alkaloids, (-)-pallidine (8) and (-)-scoulerine (11) showed strong inhibitory activities toward topoisomerase I that were comparable to camptothecin, a typical topoisomerase I inhibitor. A preliminary structure-activity relationship study suggested that the quaternary ammonium ion might play an important role in topoisomerase I inhibition by the isoquinoline alkaloids. These data indicated that DNA topoisomerase I inhibition represents probably one of the anticarcinogenic mechanisms of C. saxicola.  相似文献   

3.
In this paper novel isoindolines substituted with cyano and amidino benzimidazoles and benzothiazoles were synthesized as new potential anti-cancer agents. The new structures were evaluated for antiproliferative activity, cell cycle changes, cell death, as well as DNA binding and topoisomerase inhibition properties on selected compounds. Results showed that all tested compounds exerted antitumor activity, especially amidinobenzothiazole and amidinobenzimidazole substituted isoindolin-1-ones and benzimidazole substituted 1-iminoisoindoline that showed antiproliferative effect in the submicromolar range. Moreover, the DNA-binding properties of selected compounds were evaluated by biophysical and biochemical approaches including thermal denaturation studies, circular dichroism spectra analyses and topoisomerase I/II inhibition assays and results identified some of them as strong DNA ligands, harboring or not additional topoisomerase II inhibition and able to locate in the nucleus as determined by fluorescence microscopy. In conclusion, we evidenced novel cyano- and amidino-substituted isoindolines coupled with benzimidazoles and benzothiazoles as topoisomerase inhibitors and/or DNA binding compounds with potent antitumor activities.  相似文献   

4.
Protoberberines represent a structural class of organic cations that induce topoisomerase I-mediated DNA cleavage, a behavior termed topoisomerase I poisoning. We have employed a broad range of biophysical, biochemical, and computer modeling techniques to characterize and cross-correlate the DNA-binding and topoisomerase poisoning properties of four protoberberine analogues that differ with respect to the substituents on their A- and/or D-rings. Our data reveal the following significant features: (i) The binding of the four protoberberines unwinds duplex DNA by approximately 11 degrees, an observation consistent with an intercalative mode of interaction. (ii) Enthalpically favorable interactions, such as stacking interactions between the intercalated ligand and the neighboring base pairs, provide <50% of the thermodynamic driving force for the complexation of the protoberberines to duplex DNA. Computer modeling studies on protoberberine-DNA complexes suggest that only rings C and D intercalate into the host DNA helix, while rings A and B protrude out of the helix interior into the minor groove. (iii) All four protoberberine analogues are topoisomerase I-specific poisons, exhibiting little or no topoisomerase II poisoning activity. (iv) Modifications of the D-ring influence both DNA binding and topoisomerase I poisoning properties. Specifically, transference of a methoxy substituent from the 11- to the 9-position diminishes both DNA binding affinity and topoisomerase I poisoning activity, an observation suggesting that DNA binding is important in the poisoning of topoisomerase I by protoberberines. (v) Modifications of the A-ring have a negligible impact on DNA binding affinity, while exerting a profound influence on topoisomerase I poisoning activity. Specifically, protoberberine analogues containing either 2,3-dimethoxy; 3,4-dimethoxy; or 3, 4-methylenedioxy substituents all bind DNA with a similar affinity. By contrast, these analogues exhibit markedly different topoisomerase I poisoning activities, with these activities following the hierarchy: 3,4-methylenedioxy > 2,3-dimethoxy > 3, 4-dimethoxy. These differences in topoisomerase I poisoning activity may reflect the differing abilities of the analogues to interact with specific functionalities on the enzyme, thereby stabilizing the enzyme in its cleavable state. In the aggregate, our results are consistent with a mechanistic model in which both ligand-DNA and ligand-enzyme interactions are important for the poisoning of topoisomerase I by protoberberines, with the DNA-directed interactions involving ring D and the enzyme-directed interactions involving ring A. It is reasonable to suggest that the poisoning of topoisomerase I by a broad range of other naturally occurring and synthetic ligands may entail a similar mechanism.  相似文献   

5.
Topoisomerase II is found to be present in two isoforms alpha and beta, and both the isoforms are regulated in cancerous tissue. Development of isoform-specific topoisomerase II poisons has been of great interest for cancer-specific drug targeting. In the present investigation using quantitative structure-activity analysis of ferrocene derivatives, we show that two derivatives of ferrocene, azalactone ferrocene and thiomorpholide amido methyl ferrocene, can preferentially inhibit topoisomerase IIbeta activity. Thiomorpholide amido methyl ferrocene shows higher inhibition of catalytic activity (IC(50) = 50 microM) against topoisomerase IIbeta compared to azalactone ferrocene (IC(50) = 100 microM). The analysis of protein DNA intermediates formed in the presence of these two compounds suggests that azalactone ferrocene readily induces formation of cleavable complex in a dose-dependent manner, in comparison with thiomorpholide amido methyl ferrocene. Both the compounds show significant inhibition of DNA-dependent ATPase activity of enzyme. These results suggest that azalactone ferrocene inhibits DNA passage activity of enzyme leading to the formation of cleavable complex, while thiomorpholide amido methyl ferrocene competes with ATP binding resulting in the inhibition of catalytic activity of enzyme. In summary, thiomorpholide amido methyl ferrocene and azalactone ferrocene show distinctly different mechanisms in inhibition of catalytic activity of topoisomerase IIbeta.  相似文献   

6.
DNA relaxation catalysed by topoisomerase I is based on the reversible DNA cleavage. The reaction is inhibited by binding of splicing protein SF2/ASF, a substrate for the kinase activity of topoisomerase I. In this paper, we show a novel binding site for SF2/ASF in the cap region of topoisomerase I (amino acids 215-433) which interacts with the region containing two closely spaced RRM domains of SF2/ASF (amino acids 1-194). The sites were defined by a set of pull-down experiments with isolated recombinant polypeptides. We also indicate that the novel site is responsible for the inhibition of DNA cleavage. The polypeptide containing tandem RRM domains inhibited DNA cleavage by topoisomerase I similarly as the complete SF2/ASF. Moreover, interaction between the tandem RRM domains and the cap region was not possible in the presence of DNA.  相似文献   

7.
The naphthoquinone adduct 12,13-dihydro-N-methyl-6,11,13-trioxo-5H-benzo[4,5]cyclohepta[1,2-b]naphthalen-5,12-imine (hereafter called TU100) contains structural features of both the anthracycline and isoquinone chemotherapeutics. An initial characterization showed TU100 is cytotoxic to mammalian cells and can inhibit topoisomerase I and II. Analysis using topoisomerase I now reveals TU100 is a slow acting inhibitor targeting the enzyme in the absence of DNA. Diluting pre-incubated TU100 and topoisomerase I failed to alleviate inhibition, suggesting the enzyme is being covalently modified. Critical cysteine thiols were identified as the possible target based on the ability of reducing agents to reverse TU100 inhibition. Consistent with this idea, TU100 protected topoisomerase I from inactivation by the sulfhydryl modifying agent N-ethylmaleimide (NEM). Unlike agents nonspecifically reacting with thiols, however, TU100 is specific for topoisomerase because it failed to inhibit a cysteine dependent protease. These results indicate TU100 is a novel naphthoquinone that inactivates free topoisomerase I via alkylation of cysteine residues.  相似文献   

8.
Topoisomerase II poisoning and anticancer activity by the organometallic compound [RuCl(2)(C(6)H(6))(dmso)] was shown by us in an earlier study [Biochemistry 38 (1999) 4382]. Since high concentrations of this complex were required to achieve either effects, we have synthesized four derivatives of this complex in which the dimethyl sulphoxide group on the ruthenium atom was replaced with pyridine, 3-aminopyridine, p-aminobenzoic acid, and aminoguanidine. Three of these molecules showed enhanced potency of topoisomerase II poisoning and consequently also showed higher anticancer activity in breast and colon carcinoma cells in vitro. Detailed analysis of the molecular action of these compounds on topoisomerase II activity was carried out using the classical relaxation and cleavage activity of the enzyme, which revealed that the compounds poison topoisomerase II by freezing the enzyme and enzyme-cleaved DNA in a ternary "cleavage complex". The cleavage complex is implicated in the anti-neoplastic activity of these compounds. DNA interaction studies showed that these compounds interact with DNA in much the same way as [RuCl(2)(C(6)H(6))(dmso)], by external binding of the DNA helix. This is unlike most other topoisomerase II poisons, which predominantly interact with DNA through intercalation with the double helix.  相似文献   

9.
Separation methods for antitumor drugs capable of topoisomerase I inhibition were reviewed in this study. Camptothecin (CPT) its related analogues seemed to be promising anticancer drugs that exhibit topoisomerase I inhibition. This group of compounds contain a closed α-hydroxy-δ-lactone ring (lactone form) that can undergo reversible hydrolysis to form the open-ring form (carboxylate form). In vitro pharmacological study showed that the antitumor activity of the lactone form was higher than that of the carboxylate form. Thus a quantitative method to separate these two forms is important to evaluate the pharmacokinetics and pharmacodynamics of these compounds. Nevertheless, current separation methods are complicated by the pH-dependent instability of the lactone moiety. High-performance liquid chromatography (HPLC) coupled with fluorometric detection has been widely used for the quantitation of the drug as the intact lactone form or as the total lactone carboxylate forms in biological matrices. In this report we reviewed current applicable chromatographic techniques for further bioanalytical studies of CPT derivatives including sample preparations, HPLC columns, mobile phases and additives.  相似文献   

10.
DNA Topoisomerase I can cause DNA breaks and play a key role during cell proliferation and differentiation. It is an important target for anticancer agents. While screening for anticancer compounds, seven natural compounds, 1-7, showed potent cytotoxicities against a panel of ten cancer cell lines. Moreover, an inhibition assay demonstrated that they are also DNA topoisomerase I inhibitors, in which inhibitors 1-5 are new ones.  相似文献   

11.
12.
DNA topoisomerase I appears to be involved in DNA damage and repair in a complex manner. The enzyme is required for DNA maintenance and repair, but it may also damage DNA through its covalently DNA-bound, catalytic intermediate. The latter mechanism plays a role in tumor cell killing by camptothecins, but seems also involved in oxidative cell killing and certain stages of apoptosis. Stalling and/or suicidal DNA cleavage of topoisomerase I adjacent to nicks and modified DNA bases has been demonstrated in vitro. Here, we investigate the enzyme's interactions with UVA-induced DNA lesions inside living cells. We irradiated cells expressing GFP-tagged topoisomerase I with an UVA laser focused through a confocal microscope at confined areas of the nuclei. At irradiated sites, topoisomerase I accumulated within seconds, and accumulation lasted for more than 90 min. This effect was apparently due to reduced mobility, although the enzyme was not immobilized at the irradiated nuclear sites. Similar observations were made with mutant versions of topoisomerase I lacking the active site tyrosine or the N-terminal domain, but not with the N-terminal domain alone. Thus, accumulation of topoisomerase I at UVA-modified DNA sites is most likely due to non-covalent binding to damaged DNA, and not suicidal cleavage of such lesions. The rapid onset of accumulation suggests that topoisomerase I functions in this context as a component of DNA damage recognition and/or a cofactor of fast DNA-repair processes. However, the prolonged duration of accumulation suggests that it is also involved in more long-termed processes.  相似文献   

13.
In this article, 13 short chains that can form G-quadruplex and quadruplex-duplex motif have been designed. Fourteen oligonucleotides, including 13 short chains as well as a reference short chain all have certain level of inhibition to topoisomerase I, whether or not they form G-quadruplex and quadruplex-duplex motif, and the G-quadruplex and quadruplex-duplex motif show better activity than single short chain. The result confirmed that after forming G-quadruplex and quadruplex-duplex motif these 14 oligonucleotides are competitive inhibition, that is, through the priority binding with the topoisomerase I and precluding from its binding with the normal substrate pBR322 and, therefore, inhibiting the next reaction.  相似文献   

14.
K Jo  M D Topal 《Nucleic acids research》1998,26(10):2380-2384
Nae I protein was originally isolated for its restriction endonuclease properties. Nae I was later discovered to either relax or cleave supercoiled DNA, depending upon whether Nae I position 43 contains a lysine (43K) or leucine (43L) respectively. Nae I-43K DNA relaxation activity appears to be the product of coupling separate endonuclease and ligase domains within the same polypeptide. Whereas Nae I relaxes supercoiled DNA like a topoisomerase, even forming a transient covalent intermediate with the substrate DNA, Nae I shows no obvious sequence similarity to the topoisomerases. To further characterize the topoisomerase activity of Nae I, we report here that Nae I-43K changes the linking number of a single negatively supercoiled topoisomer of pBR322 by units of one and therefore is a type I topoisomerase. Positively supercoiled pBR322 was resistant to Nae I-43K. At low salt concentration Nae I-43K was processive; non-saturating amounts of enzyme relaxed a fraction of the DNA. At high salt concentration the same non-saturating amounts of Nae I-43K partially relaxed all the DNA in a step-wise fashion to give a Gaussian distribution of topoisomers, demonstrating a switch from a processive to a distributive mode of action. Nae I-43K decatenated kinetoplast DNA containing nicked circles, implying that Nae I-43K can cleave opposite a nick. The products of the reaction are decatenated nicked circles under both processive and distributive conditions. The behavior of Nae I-43K is consistent with that of a prokaryotic type I topoisomerase.  相似文献   

15.
A panel of glycosylated DNA binding agents (1-12) designed as functional anthracycline mimics was screened against three solid-tumor cell lines (MCF-7, HT 29 and HepG2/C3A) and three non-tumor cell lines by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) cell viability assay. Several compounds showed better in vitro cytotoxicity and selectivity against MCF-7 cells than daunomycin and doxorubicin, two known DNA binding agents that are clinically-used anti-cancer agents. Although the selectivity for HT 29 and HepG2/C3A cells is generally lower, the IC50 values of some analogs against these two cancer cell lines were of the same magnitude as doxorubicin. Because there was no correlation between DNA binding affinity and cytotoxicity, and because topoisomerase (Topo) inhibition is another biological mechanism of action of most anthracycline drugs, Topo I/II inhibition assays with 1-12 were performed. Some of the compounds showed strong inhibition against these enzymes at 100 ??M, but there was no clear correlation between cytotoxicity and Topo I/II inhibition ability. Topo I/II inhibition mode assays were also performed, which verified that these compounds are topoisomerase suppressors, not poisons. Based on these results, we conclude that although DNA binding and/or topoisomerase inhibition may contribute to the observed cytotoxicity of 1-12, other mechanisms of action are also likely to be important.  相似文献   

16.
Kowalska-Loth  B.  Bubko  I.  Komorowska  B.  Szumiel  I.  Staron  K. 《Molecular biology reports》1998,25(1):21-26
An in vitro system composed of nicked pBR322 DNA and purified topoisomerase I was employed to study the efficiency of the topoisomerase I-driven single-strand to double-strand DNA breaks conversion. At 1.4 × 105 topoisomerase I activity units per mg DNA about 20% single-strand nicks were converted into double-strand breaks during 30 min due to topoisomerase I action. Camptothecin inhibited the conversion. The conversion was also inhibited when the relaxing activity of the used topoisomerase I was increased by phosphorylation of the enzyme with casein kinase 2. The presented data suggest that topoisomerase I may be involved in production of double-stranded breaks in irradiated cells and that this process positively depends on the amount of topoisomerase I but not on its phosphorylation state.  相似文献   

17.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

18.
In the presence of a molar excess of eukaryotic DNA topoisomerase II and an appropriate concentration of dextran sulfate, relaxed closed circular DNA is converted to a negatively supercoiled form. The reaction is dependent on ATP. Neither adenosine 5'-[beta,gamma-imido]-triphosphate nor adenosine 5'-[gamma-thio]triphosphate can substitute for ATP. The negative supercoils formed are relaxed by subsequent addition of DNA topoisomerase I to the supercoiling reaction mixture. Covalent closure of a nicked circular DNA in the presence of DNA topoisomerase II and dextran sulfate but in the absence of ATP causes a small decrease in the linking number. These results suggest that when an appropriate concentration of dextran sulfate is present, the binding of a molar excess of eukaryotic DNA topoisomerase II constrains a small number of negative supercoils in DNA, which in turn generate unconstrained negative supercoils at the expense of ATP.  相似文献   

19.
Many agents (e.g. camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I (TOP1)-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the -1 and +1 base-pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base-pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage.  相似文献   

20.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号