首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human genome harbors numerous distinct families of so-called human endogenous retroviruses (HERV) which are remnants of exogenous retroviruses that entered the germ line millions of years ago. We describe here the hitherto little-characterized betaretrovirus HERV-K(HML-5) family (named HERVK22 in Repbase) in greater detail. Out of 139 proviruses, only a few loci represent full-length proviruses, and many lack gag protease and/or env gene regions. We generated a consensus sequence from multiple alignment of 62 HML-5 loci that displays open reading frames for the four major retroviral proteins. Four HML-5 long terminal repeat (LTR) subfamilies were identified that are associated with monophyletic proviral bodies, implying different evolution of HML-5 LTRs and genes. Sequence analysis indicated that the proviruses formed approximately 55 million years ago. Accordingly, HML-5 proviral sequences were detected in Old World and New World primates but not in prosimians. No recent activity is associated with this HERV family. We also conclude that the HML-5 consensus sequence primer binding site is identical to methionine tRNA. Therefore, the family should be designated HERV-M. Our study provides important insights into the structure and evolution of the oldest betaretrovirus in the primate genome known to date.  相似文献   

2.
Primates emerged about 60 million years ago. Since that time various primate-targeting retroviruses have integrated in the germ line of primate species, and some drifted to fixation. After germ line fixation, continued activity of proviruses resulted in intragenomic spread of so-called endogenous retroviruses (ERVs). Variant ERVs emerged, amplified in the genome and profoundly altered genome structures and potentially functionality. Importantly, ERVs are genome modifiers of exogenous origin. The human genome contains about 8% of sequences of retroviral origin. The human ERVs (HERVs) comprise many distinct families that amplified to copy numbers of up to several thousand. We review here the evolution of several well-characterized HERV families in the human lineage since initial germ line fixation. It is apparent that endogenous retroviruses profoundly affected the genomes of species in the evolutionary lineage leading to Homo sapiens.  相似文献   

3.
4.
Mayer J  Meese EU 《Genomics》2002,80(3):331-343
A substantial amount of the human genome is composed of human endogenous retroviruses (HERVs). Manifold HERV families have been identified, among them several so-called HERV-K(HML) families. Although the HERV-K(HML-2) family has been studied in detail, other HERV-K families are not as well characterized. We describe here the HERV-K HML-3 family in more detail. We estimate that there are about 140 proviral loci or remains of such per haploid genome. Most loci are severely mutated. Proviruses displaying larger deletions in gag and pol are common. A multiple alignment of 73 HERV-K(HML-3) sequences displays several potentially important differences compared with the HERVK9I sequence in Repbase. A consensus sequence with open reading frames for all retroviral genes was generated, for which intact dUTPase motifs and env gene variants with different coding capacities are observed. Phylogenetic analysis shows near-monophyly with distinction of two closely related subgroups. Proviruses formed about 36 million years ago. However, no continuous activity through primate evolution is indicated.  相似文献   

5.
HERV-K113 and HERV-K115 have been considered to be among the youngest HERVs because they are the only known full-length proviruses that are insertionally polymorphic and maintain the open reading frames of their coding genes. However, recent data suggest that HERV-K113 is at least 800,000 years old, and HERV-K115 even older. A systematic study of HERV-K HML2 members to identify HERVs that may have infected the human genome in the more recent evolutionary past is lacking. Therefore, we sought to determine how recently HERVs were exogenous and infectious by examining sequence variation in the long terminal repeat (LTR) regions of all full-length HERV-K loci. We used the traditional method of inter-LTR comparison to analyze all full length HERV-Ks and determined that two insertions, HERV-K106 and HERV-K116 have no differences between their 5' and 3' LTR sequences, suggesting that these insertions were endogenized in the recent evolutionary past. Among these insertions with no sequence differences between their LTR regions, HERV-K106 had the most intact viral sequence structure. Coalescent analysis of HERV-K106 3' LTR sequences representing 51 ethnically diverse individuals suggests that HERV-K106 integrated into the human germ line approximately 150,000 years ago, after the emergence of anatomically modern humans.  相似文献   

6.
7.
Human endogenous retroviruses (HERVs), which constitute a significant part of the human genome, might have a serious impact on primate evolution. Over a hundred insertions of HERV-K(HML-2) family members distinguish the human genome from other primate genomes. However, only three cases of insertion polymorphisms have been reported so far, all for endogenous HERV-K proviruses. This suggests that some retroviral integrations occurred rather recently in human genome evolution. In this report, we describe a very rare case of true insertion polymorphism of a solitary HERV-K LTR in the human genome. Distribution of the LTR-containing allele was tested in 5 Africans and 83 individuals from three Russian populations. The allele frequency appeared to be relatively high in populations of both European and Asian origin. The detected polymorphic LTR could be a useful molecular genetic marker of the corresponding genomic region.  相似文献   

8.
9.
10.
The classification of the long terminal repeats (LTRs) of the human endogenous retrovirus HERV-K (HML-2) family was refined according to diagnostic differences between the LTR sequences. The mutation rate was estimated to be approximately equal for LTRs belonging to different families and branches of human endogenous retroviruses (HERVs). An average mutation rate value was calculated based on differences between LTRs of the same HERV and was found to be 0.13% per million years (Myr). Using this value, the ages of different LTR groups belonging to the LTR HML-2 subfamily were found to vary from 3 to 50Myr. Orthologous potential LTR-containing loci from different primate species were PCR amplified using primers corresponding to the genomic sequences flanking LTR integration sites. This allowed us to calculate the phylogenetic times of LTR integrations in primate lineages in the course of the evolution and to demonstrate that they are in good agreement with the LTR ages calculated from the mutation rates. Human-specific integrations for some very young LTRs were demonstrated. The possibility of LTRs and HERVs involvement in the evolution of primates is discussed.  相似文献   

11.
Human endogenous retroviruses (HERVs) are the remnants of ancient germ cell infection by exogenous retroviruses and occupy up to 8% of the human genome. It has been suggested that HERV sequences have contributed to primate evolution by regulating the expression of cellular genes and mediating chromosome rearrangements. After integration 28 million years ago, members of the HERV-K (HML-2) family have continued to amplify and recombine. To investigate the utility of HML-2 polymorphisms as markers for the study of more recent human evolution, we compiled a list of the structure and integration sites of sequences that are unique to humans and screened each insertion for polymorphism within the human genome databases. Of the total of 74 HML-2 sequences, 18 corresponded to complete or near-complete proviruses, 49 were solitary long terminal repeats (LTRs), 6 were incomplete LTRs, and 1 was a SVA retrotransposon. A number of different allelic configurations were identified including the alternation of a provirus and solitary LTR. We developed polymerase chain reaction-based assays for seven HML-2 loci and screened 109 human DNA samples from Africa, Europe, Asia, and Southeast Asia. Our results indicate that the diversity of HML-2 elements is higher in African than non-African populations, with population differentiation values ranging from 0.6 to 9.8%. These findings denote a recent expansion from Africa. We compare the phylogenetic relationships of HML-2 sequences that are unique to humans and consider whether these elements have played a role in the remodeling of the hominid genome.Reviewing Editor: Dr. Wen-Hsiung Li  相似文献   

12.
Retroviruses and primate evolution   总被引:9,自引:0,他引:9  
Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. HERVs can influence genome regulation through expression of retroviral genes, either via genomic rearrangements following HERV integrations or through the involvement of HERV LTRs in the regulation of gene expression. Some HERVs emerged in the genome over 30 MYr ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. HERVs might have conferred antiviral resistance on early human ancestors, thus helping them to survive. Furthermore, newly integrated HERVs could have changed the pattern of gene expression and therefore played a significant role in the evolution and divergence of Hominoidea superfamily. Comparative analysis of HERVs, HERV LTRs, neighboring genes, and their regulatory interplay in the human and ape genomes will help us to understand the possible impact of HERVs on evolution and genome regulation in the primates. BioEssays 22:161-171, 2000.  相似文献   

13.
14.
The vertebrate genome contains an endogenous retrovirus that has been inherited from the past millions of years. Although approximately 8% of human chromosomal DNA consists of sequences derived from human endogenous retrovirus (HERV) fragments, most of the HERVs are currently inactive and non-infectious due to recombination, deletions, and mutations after insertion into the host genome. Several studies suggested that Human endogenous retroviruses (HERVs) factors are significantly related to certain cancers. However, only limited studies have been conducted to analyze the expression of HERV derived elements at protein levels in certain cancers. Herein, we analyzed the expression profiles of HERV-K envelope (Env) and HERV-R Env proteins in eleven different kinds of cancer tissues. Furthermore, the expression patterns of both protein and correlation with various clinical data in each tissue were analyzed. The expressions of both HERV-K Env and HERV-R Env protein were identified to be significantly high in most of the tumors compared with normal surrounding tissues. Correlations between HERV Env expressions and clinical investigations varied depending on the HERV types and cancers. Overall expression patterns of HERV-K Env and HERV-R Env proteins were different in every individual but a similar pattern of expressions was observed in the same individual. These results demonstrate the expression profiles of HERV-K and HERV-R Env proteins in various cancer tissues and provide a good reference for the association of endogenous retroviral Env proteins in the progression of various cancers. Furthermore, the results elucidate the relationship between HERV-Env expression and the clinical significance of certain cancers.  相似文献   

15.
Sequences homologous to the human endogenous retrovirus (HERV) family HERV-K(HML-2) are present in all Old World primate species. A previous study showed that a central region of the HERV-K(HML-2) gag genes in Hominoidea species displays a 96-bp deletion compared to the gag genes in lower Old World primates. The more ancient HERV-K(HML-2) sequences present in lower Old World primates were apparently not conserved during hominoid evolution, as opposed to the deletion variants. To further clarify the evolutionary origin of the HERV-K(HML-2) family, we screened GenBank with the 96-bp gag-sequence characteristic of lower Old World primates and identified, to date, 10 human sequence entries harboring either full-length or partially deleted proviral structures, probably representing remnants of a more ancient HERV-K(HML-2) variant. The high degree of mutations demonstrates the long-time presence of these HERV-K(OLD) proviruses in the genome. Nevertheless, they still belong to the HML-2 family as deduced from dot matrix and phylogenetic analyses. We estimate, based on the family ages of integrated Alu elements and on long terminal repeat (LTR) divergence data, that the average age of HERV-K(OLD) proviruses is ca. 28 million years, supporting an integration time before the evolutionary split of Hominoidea from lower Old World primates. Analysis of HERV-K(OLD) LTR sequences led to the distinction of two subgroups, both of which cluster with LTRs belonging to an evolutionarily older cluster. Taken together, our data give further insight into the evolutionary history of the HERV-K(HML-2) family during primate evolution.  相似文献   

16.
17.

Background

The human genome contains about 8% of endogenous retroviral sequences originated from germ cell infections by exogenous retroviruses during evolution. Most of those sequences are inactive because of accumulation of mutations but some of them are still capable to be transcribed and translated. The latter are insertionally polymorphic HERV-K113 and HERV-K115. It has been suggested that their presence and expression was connected with several human diseases. It is also believed that they could interfere with the replication cycle of exogenous retroviruses, including HIV.

Results

Prevalence of endogenous retroviral sequences HERV-K113 and HERV-K115 was determined in the Polish population. The frequencies were found as 11.8% for HERV-K113 and 7.92% for HERV-K115. To verify the hypothesis that the presence of these HERVs sequences could affect susceptibility to HIV infection, comparison of a control group (HIV-negative, not exposed to HIV; n = 303) with HIV-positive patients (n = 470) and exposed but uninfected (EU) individuals (n = 121) was performed. Prevalence of HERV-K113 and HERV-K115 in the EU group was 8.26% and 5.71%, respectively. In the HIV(+) group we detected HERV-K113 sequences in 12.98% of the individuals and HERV-K115 sequences in 7.23% of the individuals. There were no statistically significant differences between groups studied.

Conclusion

The frequency of HERV-K113 and HERV-K115 sequences in Poland were found to be higher than usually shown for European populations. No relation between presence of the HERVs and HIV infection was detected.  相似文献   

18.
Hypermutation of an ancient human retrovirus by APOBEC3G   总被引:2,自引:1,他引:1  
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, but all are remnants of ancient retroviral infections and harbor inactivating mutations that render them replication defective. Nevertheless, as viral “fossils,” HERVs may provide insights into ancient retrovirus-host interactions and their evolution. Indeed, one endogenous retrovirus [HERV-K(HML-2)], which has replicated in humans for the past few million years but is now thought to be extinct, was recently reconstituted in a functional form, and infection assays based on it have been established. Here, we show that several human APOBEC3 proteins are intrinsically capable of mutating and inhibiting infection by HERV-K(HML-2) in cell culture. We also present striking evidence that two HERV-K(HML-2) proviruses that are fixed in the modern human genome (HERV-K60 and HERV-KI) were subjected to hypermutation by a cytidine deaminase. Inspection of the spectrum of mutations that are found in HERV-K proviruses in the human genome and HERV-K DNA generated during in vitro replication in the presence of each of the human APOBEC3 proteins unequivocally identifies APOBEC3G as the cytidine deaminase responsible for hypermutation of HERV-K60 and HERV-KI. This is a rare example of the antiretroviral effects of APOBEC3G in the setting of natural human infection, whose consequences have been fossilized in human DNA, and a striking example of inactivation of ancient retroviruses in humans through enzymatic cytidine deamination.  相似文献   

19.
One of the evolutionary mechanisms for acquisition of novel functional sequences can be domestication of exogenous retroviruses that have been integrated into the germ line. The whole genome mapping of such elements in various species could reveal differences in positions of the retroviral integration and suggest possible roles of these differences in speciation. Here, we describe the number, locations and sequence features of the human endogenous retrovirus HERV-K (HML-2) long terminal repeat (LTR) sequences on human chromosome 21. We show that their distribution along the chromosome is not only non-random but also roughly correlated with the gene density. Amplification of orthologous LTR sites from a number of primate genomes produced patterns of presence and absence for each LTR sequence and allowed determination of the phylogenetic ages and evolutionary order of appearance of individual LTRs. The identity level and phylogenetic age of the LTRs did not correlate with their map locations. Thus, despite the non-random distribution of LTRs, they have apparently been inserted randomly into the chromosome relative to each other. As evidenced in previous studies of chromosomes 19 and 22, this is a characteristic of HERV-K integration.  相似文献   

20.
Various retroviruses have been shown to encode dUTPase. The overall phylogeny of dUTPase is unclear, though. The human genome contains a significant amount of human endogenous retroviruses (HERV) representing fossilized sequences of ancient exogenous retroviruses. A few HERV families have been reported to harbor dUTPase domains. We surveyed the various HERV families for the presence of dUTPase and found that ancestors of all HERV-K families but one encoded dUTPase. With two exceptions phylogenetic analysis shows a monophyletic origin of dUTPase for the different HERV-K dUTPases. Sequences of consensus dUTPase domains suggest that the various exogenous ancestors of HERV-K once encoded active enzymes. Our analysis provides informations on dUTPase phylogeny and further shows that endogenous retroviruses provide important informations regarding retrovirus evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号