首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simple co-lyophilization of serine protease subtilisin Carlsberg with [12]-crown ether-4 (12-crown-4) or methyl-beta-cyclodextrin (MbetaCD) drastically increases its catalytic activity in organic solvents. We investigated whether the improved activity would cause substrate diffusional limitations. To experimentally assess the issue, the enzyme was inactivated with PMSF. Different amounts of active and inactive subtilisin were codissolved in 10 mM phosphate buffer (pH 7.8) followed by lyophilization with or without 12-crown-4 or MbetaCD. Initial rates for the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester and 1-propanol in anhydrous THF were plotted vs. the amount of active enzyme present in the formulations. For all three enzyme formulations a linear relationship was observed and the results clearly show that activation of subtilisin Carlsberg by crown ethers and MbetaCD did not cause diffusional limitations. This was somewhat surprising because theoretical models predicted such diffusional limitations for the activated formulations. However, investigation of the protein powder particles obtained after co-lyophilization with 12-crown-4 and MbetaCD revealed a drastically reduced particle size for these formulations when suspended in THF. The particle micronization afforded by the excipients prevented substrate diffusional limitations, a factor that should be taken into account when designing improved enzyme formulations for synthetic applications in organic solvents.  相似文献   

2.
The esterification of lauric acid with geraniol catalyzed by the commercially immobilized lipase preparation from Mucor miehei, Lipozyme(R), was studied in well-stirred flasks. The enzyme support was characterized in terms of its internal and external surface area, protein location, and protein content. It was found that the enzyme was mainly located on the external surface of the support, therefore, internal diffusional limitations were not important. It was also shown that the protein content of the support depends on the size of the particle, with smaller particles containing higher amounts of protein per unit weight. Under the conditions studied, the reaction was not under external mass transfer limitations, and the initial reaction rate depended on the size of the support particles. This was mainly due to the different protein contents on the support as a function of particle size and not to internal or external mass transfer limitations. Also, it was found that the inhibition exerted by water was predominantly a physical effect due to its accumulation around the enzyme. It was also found that the reaction was substrate inhibited by lauric acid, but not by geraniol. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Biocatalytic transesterification of methylmethacrylate is possible in many different solvents. The reaction rate is readily controlled by variation in solvent physical properties. The reaction proceeds better in hydrophobic solvents, and activity can be restored in hydrophilic solvents by the addition of water. We have now demonstrated that supercritical carbon dioxide is not a good solvent for the reaction between 2-ethlhexanol and methylmethacrylate. It apperars that the supercritical carbon dioxide may either alter the pH of the microaqueous environment associated with the protein or reversibly form covalent complexes with free amine groups on the surface of the enzyme. Although supercritical carbon dioxide is a poor solvent for acrylate transesterification, many other supercritical fluids (ethane, ethylene, sulfur hexafluoride, and fluoroform) are better than most conventional solvents. In supercritical ethane it is possible to control the activity of the enzyme by changing pressure, and the enzyme appears to follow Michaelis-Menten Kinetics. We find that sulfur hexafluoride, the first anhydrous inorganic solvent in which biocatalytic activity has been reported, is a better solvent than any conventional or supercritical organic fluid tested.  相似文献   

4.
We studied the effect of organic solvents on the kinetics of porcine pancreatic lipase (pp) for the resolution of racemic glycidol through esterification with butyric acid. We quantified ppl hydration by measuring water sorption isotherms for the enzyme in the solvents/mixtures tested. The determination of initial rates as a function of enzyme hydration revealed that the enzyme exhibits maximum apparent activity in the solvents/mixtures at the same water content (9% to 11% w/w) within the associated experimental error. The maximum initial rates are different in all the media and correlate well with the logarithm of the molar solubility of water in the media, higher initial rates being observed in the solvents/mixtures with lower water solubilities. The data for the mixtures indicate that ppl apparent activity responds to bulk property of the solvent. Measurements of enzyme particle sizes in five of the solvents, as function of enzyme hydration, revealed that mean particle sizes increased with enzyme hydration in all the solvents, differences between solvents being more pronounced at enzyme hydration levels close to 10%. At this hydration level, solvents having a higher water content lead to lower reaction rates; these are the solvents where the mean enzyme particle sizes are greater. Calculation of the observable modulus indicates there are no internal diffusion limitations. The observed correlation between changes in initial rates and changes in external surface area of the enzyme particles suggests that interfacial activation of ppl is only effective at the external surface of the particles. Data obtained for the mixtures indicate that ppl enantioselectivity depends on specific solvent-enzyme interactions. We make reference to ppl hydration and activity in supercritical carbon dioxide. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The thermostability of anhydrous α-chymotrypsin has been analysed both in air and in organic solvents, with regard to the effect of the protein water-content on the course of deactivation. A higher initial water content increases the rate of inactivation.

Deactivation tests carried out under a constant thermodynamic activity of water indicate that reductions in dehydration rate lead to lower stability.

The effect of water diffusion phenomena has also been studied. Protein aggregates of larger size are less thermostable, thus indicating that diffusional limitations to water transfer can play a significant role in thermoinactivation.

The effect of water content on enzyme thermostability was also measured in the presence of two organic solvents of different hydrophobicity. In both cases, the resulting increased thermolability can be explained in terms of a limitation in water transfer towards the non-aqueous environment.  相似文献   

6.
Mass transfer limitations were studied in enzyme preparations of alpha-chymotrypsin made by deposition on different porous support materials such as controlled pore glasses, Celite, and polyamides of different particle sizes. It is the onset of mass transfer limitations that determines the position of the activity optimum with respect to enzyme loading on each support. The evidence of various experiments indicates that internal diffusional limitations are the important mechanism for the observed mass transfer limitations. External diffusion was not found to play an important role under the conditions used, and it was also found that when immobilizing multilayers of enzyme the buried enzyme molecules are active to a large extent. An extreme situation is observed on Celite at very high loadings. Under these conditions, this support is expected to have its pores completely filled with packed enzyme molecules, and then it is the diffusion within the enzyme layer that determines the observed rate. As the enzyme loading increases, the area of contact between the deposited enzyme layers and the liquid solution inside the pores diminishes, causing a decrease on the observed rate of an intrinsically fast reaction which apparently is incongruous with the presence of more enzyme in the system. This work shows that mass transfer limitations can be an important factor when working with immobilized enzymes in organic media, and its study should be carried out in order to avoid undesired reduced enzyme activities and specificities.  相似文献   

7.
We report here the first determinations of individual rate constants and equilibrium constants for enzymatic reactions in essentially anhydrous organic solvents. Using the added nucleophile method we have measured the effect of changing solvent on the binding and catalytic steps for subtilisin-catalyzed transesterification of N-protected amino acid esters. The detailed information generated indicates that once the substrate has bound to the enzyme, the catalytic machinery can work at rates equivalent to those in water. The decreased overall rates for subtilisin suspended in anhydrous solvents are merely the result of extremely high values for K(s), in most cases, coupled with low concentrations of nucleophile ( approximately 1.0M in organic solvents, and 55M in water). The method described, which is generally applicable, and straightforward experimentally, will, we believe, enable a clearer understanding of how changing solvent can predictably affect the activity and specificity of the enzyme. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
The use of solvent-free systems in the oil and fats industry is commonplace. Initial studies on interesterification were carried out in solvent systems because the lipase was immobilized solely by adsorption onto particles of diatomaceous earth. In this study, the mass transfer characteristics associated with the continuous interesterification of olive oil in a solvent-free system have been examined, for lipase immobilized on the three ion-exchange materials: Duolite ES562, Duolite ES568, and Spheroil DEA. The process of immobilization is influenced by the internal structure of the material and this in turn influences the interesterification activity of the catalyst. Individually prepared catalysts for the three support materials have shown that external mass transfer limitations are unlikely even at low flowrates.In the case of Spherosil DEA, with a mean pore diameter of 1480 A, the wide pores would be expected to reduce internal mass transfer limitations; however, it is more likely that the reduction in activity with increased catalyst loading is due to the lipase molecules being immobilized in a tightly packed monolayer. In such a situation, some active sites of the lipase molecules would become inaccessible to substrate molecules leading to an observed reduction in activity. For Duolite ES568, the observed results are very similar to those seen for Spherosil DEA, however, the pore structure of this support material indicate that some internal mass transfer limitations may also be occurring. Yet the contribution of the individual effects cannot be determined. The results observed for the support Duolite ES562 are different than those observed for the other materials and reflect the heterogeneity of Duolite ES562. The large proportion of narrow pores in the support mean that, for the catalysts examined, immobilization is most likely to have occurred in the external pores of the particles, and as such no internal mass transfer limitation is observed.It is clear that for interesterification the material chosen for enzyme immobilization will have an important role in determining the catalyst efficiency. External mass transfer limitations are very minor and observed internal mass transfer limitations may be caused by both internal mass transfer and the manner in which the immobilization process occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 (±2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast (≤nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties.  相似文献   

10.
The protein content and the rates of hydrolysis of p-nitrophenyl palmitate (pNPP) in water (soluble enzyme and emulsified substrate) and in heptane (soluble substrate and insoluble enzyme) were measured for thirty-two commercial lipase preparations. The protein content of the powders varied in a wide range as well as the activity on emulsified pNPP showing the high heterogeneity of the commercial samples. Activity in heptane also varied but to a lesser extent than that in water. There was no direct correlation between activities in water and in heptane as assayed with the same hydrolytic reaction. The ratio of activity in heptane to that in water, R(O/A) ratio, was introduced to characterize activity in organic media. Six lipases showed R(O/A) values higher than 1 demonstrating a higher activity in organic solvent than in water. A linear correlation of R(O/A) with activity in water (log plot) suggested the strong influence of diffusional limitations on activity of solid enzyme suspended in organic solvents.  相似文献   

11.
A general mathematical model was developed for predicting the performance and simulation of a packed-bed immobilized enzyme reactor performing a reaction that follows Michaelis–Menten kinetics with competitive product inhibition. The performance of a packed-bed immobilized enzyme reactor was analyzed taking into account the effect of bed swelling on various diffusional phenomena such as axial dispersion, internal and external mass transfer limitations. The numerical solutions were compared with experimental data obtained for a packed-bed reactor operating with β-galactosidase entrapped in Ca-alginate-K-κ-carrageenan gels for lactose hydrolysis.  相似文献   

12.
The performance of packed bed (PBR) and modified bubble tank (MBTR) reactors was compared with respect to recombinant protein (β-galactosidase) production by suspended and immobilized E. coli. The MBTR was superior to the PBR due to easy operation and higher protein production. Gas-liquid mass transfer was not affected by the presence of gel beads, and there were no internal or external oxygen diffusion limitations in either reactor. High substrate concentration, small bead size, low cell densities, and similar values of effective diffusion coefficient of oxygen in water and in alginate may have decreased the internal mass transfer limitations.  相似文献   

13.
It has been observed that water, which is absolutely essential for enzyme activity, can induce the agglomeration of enzyme particles in organic media. Although enzyme agglomeration is significant in that it usually reduces enzyme activity and stability, little attention has been paid to the quantitative analysis of enzyme agglomeration behavior in nonaqueous bioactalytic systems. In this study, the effects of water and silica gel on enzyme agglomeration were investigated usingCandida rugosa lipase and cyclohexane as a model enzyme and an organic medium. The extent of enzyme agglomeration was quantified by sieve analysis of freeze-dried agglomerates. Increasing the water content of the medium increased the size of the enzyme agglomerates, and it was found that water produced during the esterification reaction could also promote the agglomeration of enzyme particles suspended in organic media. On the other hand, the size of the enzyme agglomerates was remarkably reduced in the presence of silica gel at the same water content. We also show that this increase in the size of enzyme agglomerates results in lower reaction rates in organic solvents.  相似文献   

14.
We have examined enzymes in nearly anhydrous organic solvents spanning a wide range of dielectric constants using a combination of electron paramagnetic resonance (EPR) spectroscopy, molecular dynamics simulations, high-pressure kinetic studies and the electrostatic model of Kirkwood. This approach enabled us to investigate the relationship between catalytic activity, protein flexibility and solvent polarity for an enzymatic reaction proceeding through a highly polar transition state in the near absence of water. Further insights into water-protein interactions and the involvement of water in enzyme structure and function have been obtained by EPR and multinuclear nuclear magnetic resonance studies of enzymes suspended and immobilized in organic solvents with and without added water. In these systems, correlations were observed between the water content and enzyme activity, flexibility, and active-site polarity, although the structural properties of suspended and immobilized enzymes differed markedly. These results have helped to elucidate the role of water in molecular events at the enzymic active site leading to improved biocatalysis in low-water environments.  相似文献   

15.
Urea is one of the most commonly used denaturants of proteins. However, herein we report that enzymes lyophilized from denaturing concentrations of aqueous urea exhibited much higher activity in organic solvents than their native counterparts. Thus, instead of causing deactivation, urea effected unexpected activation of enzymes suspended in organic media. Activation of subtilisin Carlsberg (SC) in the organic solvents (hexane, tetrahydrofuran, and acetone) increased with increasing urea concentrations up to 8 M. Active-site titration results and activity assays indicated the presence of partially unfolded but catalytically active SC in 8 M urea; however, the urea-modified enzyme retained high enantioselectivity and was ca. 80 times more active than the native enzyme in anhydrous hexane. Likewise, the activity of horseradish peroxidase (HRP) lyophilized from 8 M urea was ca. 56 times and 350 times higher in 97% acetone and water-saturated hexane, respectively, than the activity of HRP lyophilized from aqueous buffer. Compared with the native enzyme, the partially unfolded enzyme may have a more pliant and less rigid conformation in organic solvents, thus enabling it to retain higher catalytic activity. However, no substantial activation was observed for alpha-chymotrypsin lyophilized from urea solutions in which the enzyme retained some activity, illustrating that the activation effect is not completely general.  相似文献   

16.
The magnitude of diffusional restrictions in reactions of peptide hydrolysis and synthesis was studied with α-chymotrypsin immobilized in two different size commercial glyoxal-agarose gel particles at enzyme loads of 0.25, 0.5 and 1 mg protein/g gel. Such magnitude was evaluated by determining the effectiveness factor. Results showed that the effect of diffusional restrictions was stronger for the reaction of hydrolysis than synthesis, being the effectiveness factor in some cases three times higher. Diffusional restrictions were stronger for the catalysts of larger size and with higher enzyme loads, a more than three-fold decrease in the effectiveness factor being observed when the catalyst particle radius increased four times and close to a three-fold decrease when the enzyme load was increased four times. Enzyme loads and particle sizes for avoiding diffusional restrictions in each of the reactions were determined from a steady-state mass balance to the catalyst particle.  相似文献   

17.
Steady-state kinetic analysis has been used to confirm the catalytic mechanism of lyophilized subtilisin suspended in a variety of organic solvents. Specifically, this article demonstrates that partial reactions can occur between subtilisin and ester substrates in organic solvents. Partitioning of common intermediates between competing acceptors at a constant ratio of products has also been described. The decomposition of a common intermediate formed from different substrates at the same rate is also further evidence of an acyl-enzyme mechanism for subtilisin suspended in anhydrous solvents. Partitioning of a common intermediate to give two products at a constant total rate, and saturation kinetics at varying substrate concentrations, complete a kinetic investigation of the enzyme mechanism. All the data generated support the formation of a stable acyl enzyme during the transesterification reaction catalzyed by subtilisin in the solvents used.  相似文献   

18.
Activity and flexibility of alcohol dehydrogenase in organic solvents   总被引:2,自引:0,他引:2  
The oxidation of cinnamyl alcohol to cinnamaldehyde by horse liver alcohol dehydrogenase (LADH) was carried out in nearly anhydrous organic solvents and in solvents containing from 0.1 to 10% added water. In nearly anhydrous solvents containing less than 0.02% water, the oxidation rate increased as the water solubility in the solvent decreased, but the reaction did not require active LADH. Moreover, the highest activity in nearly anhydrous heptane was obtained by lyophilizing the enzyme from a solution of pH 2.0, even though LADH exhibits virtually no enzymatic activity in water at this pH. The catalytic activity of LADH was restored and increased dramatically as small amounts of water were added to each solvent. In conjunction with the activity measurements, electron paramagnetic resonance (EPR) spectroscopy and two active-site directed spin labels were used to examine solvent-dependent structural features of LADH. The EPR spectra indicated that LADH became more rigid as the dielectric constant of the solvent decreased. The degree of rigidity also depended on the pH from which the enzyme was lyophilized, indicating that the ionization state of the enzyme can have an important influence on its dynamics in organic solvents. Finally, adding 1% water to organic solvents had no apparent effect on the enzyme's conformation or flexibility near the spin label, even though enzyme activity was an order of magnitude higher when 1% water was present.  相似文献   

19.
Experimental results obtained during the design of two immobilized cell catalysts by entrapment on gelatin are presented. Strong diffusional limitations are found and explained with the usual parameters and models, introducing an empirical correlation between substrate concentration and effectiveness factor. The effect of particle size, enzyme load, and specific activity in the system is discussed in terms of cooperation between bioengineers and geneticists.  相似文献   

20.
Nanoparticles provide an ideal remedy to the usually contradictory issues encountered in the optimization of immobilized enzymes: minimum diffusional limitation, maximum surface area per unit mass, and high effective enzyme loading. In addition to the promising performance features, the unique solution behaviors of the nanoparticles also point to a transitional region between the heterogeneous (with immobilized enzymes) and homogeneous (with soluble free enzymes) catalysis. The particle mobility, which is related to particle size and solution viscosity through Stokes-Einstein equation, may impact the reaction kinetics according to the collision theory. The mobility-activity relationship was examined through experimental studies and theoretical modeling in the present work. Polystyrene particles with diameters ranging from 110-1000 nm were prepared. A model enzyme, alpha-chymotrypsin, was covalently attached to the nanoparticles up to 6.6 wt%. The collision theory model was found feasible in correlating the catalytic activities of particles to particle size and solution viscosity. Changes in the size of particles and the viscosity of reaction media, which all affect the mobility of the enzyme catalyst, evidently altered the intrinsic activity of the particle-attached enzyme. Compared to K(M), k(cat) appeared to be less sensitive to particle size and viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号