首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary On t.l.c. plates 125I-cholera toxin binds to a disialoganglioside tentatively identified as GDlb with about 10 times less capacity than to ganglioside GM1. Binding of labeled toxin to both gangliosides was abolished in presence of excess amounts of unlabeled B subunit. Ganglioside extracts from human or pig intestinal mucosa showed toxin binding to gangliosides GM1 and GD1b. In ganglioside-containing lipid monolayers the penetration of the toxin was independent of the ganglioside binding capacity.Abbreviations GM2 Gal-NAc14Gal(3-2NeuAc)14G1c1Cer - GM1 Gal3Ga1-NAc14Gal(32NeuAc)14G1c11Cer - GD1a NeuAc23Ga113Gal-NAc14Gal(32NeuAc)14G1c11Cer - GD1b Gall3Gal-NAcl4Gal(32NeuAc82NeuAc)14Glc11Cer - GT1b NeuAc23Ga113Ga1-NAcal4Gal(3-2NeuAc82NeuAc)14G1c11Cer - dpPC 1,2-hexadecanoyl-sn-glycero-3-phosphocholine - dpPE 1,2-hexadecanoyl-sn-glycero-3-phosphoethanolamine  相似文献   

2.
Morniga M is a jacalin-related and mannose-specific lectin isolated from the bark of the mulberry (Morus nigra). In order to understand the function and application of this novel lectin, the binding property of Morniga M was studied in detail using an enzyme-linked lectinosorbent assay and lectin-glycan inhibition assay with extended glycan/ligand collection. From the results, it was found that the di-, tri-, and oligomannosyl structural units of N-glycans such as those of the bovine 1-acid glycoprotein (gp) and lactoferrin were the most active gps, but not the O-glycans or polysaccharides including mannan from yeast. The binding affinity of Morniga M for ligands can be ranked in decreasing order as follows: gps carrying multiple N-glycans with oligomannosyl residues >> N-glycopeptide with a single trimannosyl core > Tri-Man oligomer [Man1 6(Man 1 3) Man], Penta-Man oligomer [Man1 6(Man1 3)Man1 6(Man1 3) Man] Man 1 2, 3 or 6 Man > Man > GlcNAc, Glc >> L-Fuc, Gal, GalNAc (inactive), demonstrating the unique specificity of this lectin that may not only assist in our understanding of cell surface carbohydrate ligand-lectin recognition, but also provide informative guidelines for the application of this structural probe in biotechnological and clinical regimens, especially in the detection and purification of N-linked glycans.  相似文献   

3.
Summary A mentally retarded boy with trisomy 9p is described. This trisomy arose through aberrant segregation of translocation chromosome during meiosis in his mother, who has a complex translocation involving chromosomes 9, 13, and 14. Based on both G-, Q-banding, and DNA replication patterns, the patient's karyotype was identified as 47,XY,-13, +(9;13) (9pter9q12::13q3113qter), +t(13;14) (13pter13q31::14pl?14pter). We suppose his mother's karyotype to be 46,XX,-9,-13,-14,+t(9;13) (9pterq12::13q3113qter), +t(13;14) (13pter13q31::14pl?14pter), +t(9;14) (9qter9q12::14pl?14qter). His phenotypically normal brother and sister are also carriers, having the same translocation chromosome as their mother. Clinical findings of the patient included peculiar face with hypertelorism, prominent nasal bridge and deformed helix, marked delay of osseous development, hypoplastic phalangia in fingers and toes, dysplastic nails and absence of digital triradii.  相似文献   

4.
Summary Gene dosage studies yielded results consistent with assignment of the locus for nucleoside phosphorylase to band 14q13. The red blood cells from a patient with the karyotype 47,XX,+der(14),t(8;14)(8qter8q24: :14q2114pter)pat had enzyme activity 50% higher than red cells from 47 normal controls, two trisomies involving chromosomes other than 14, and five balanced translocations involving chromosome 14. On the other hand, the red cells of a case with a karyotype 45,XX,-14,-22,+der(22),t(14;22)(14qter14q11 or 14q12::22p1122qter)mat and a case with a karyotype 47,XX, +der(14),t(14;16)(14pter14q11::16q2416qter)mat had normal activity.  相似文献   

5.
Structures of acidic N-glycans released from porcine zona pellucida glycoproteins by hydrazinolysis were studied. The results indicated that the acidic glycans are of mono- to tetraantennary complex-type with and without N-acetyllactosamine repeating units. Sulfated residues are not only located at the C-6 position of GlcNAc included in the N-acetyllactosamine repeating units, but also at the C-6 position of GlcNAc in the non-repeated antennae and at the C-3 position of reducing terminal GlcNAc residue. Analysis of the oligosaccharide fragments released by endo--galactosidase digestion and by hydrazine/nitrous acid treatment also revealed that various sulfated and non-sulfated forms of fucosylated structures such as Fuc12Gal14(±SO–36)GlcNAc (type 2H), Gal14(Fuc13)(±SO–36)GlcNAc(Lex) and Fuc13 or 4(±SO–36)GlcNAc, are expressed in the repeated outer chain moieties.  相似文献   

6.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   

7.
The trisaccharide Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was enzymatically synthesized, within situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4-epimerase, UDP-Gal:GlcNAc 4-galactosyltransferase and UDP-Gal:Gal14GlcNAc 3-galactosyltransferase, Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was formed in a 2.2 µmol ml–1 yield starting from the acceptor GlcNAc1O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal13Gal14GlcNAc epitope which plays an important role in various biological and immunological processes.  相似文献   

8.
The conformational behaviour of the spacer-linked synthetic Sda tetrasaccharide -d-GalpNAc-(14)-[-Neu5Ac-(23)]--d-Galp-(14)--d-GlcpNAc-(1O)(CH2)5NH2 (1) and the two mimics -d-Galp-(14)-[-Neu5Ac-(23)]--d-Galp-(14)--d-GlcpNAc-(1O)(CH2)5NH2 (2) and -d-GlcpNAc-(14)-[-Neu5Ac-(23)]--d-Galp-(14)--d-GlcpNAc-(1O)(CH2)5NH2 (3) were investigated by 1H NMR spectroscopy in combination with molecular dynamics (MD) simulations in water. Experimental 2D 1H ROESY cross-peak intensities (ROEs) of the tetrasaccharides were compared with calculated ROEs derived from MD trajectories using the CROSREL program. Analysis of these data indicated that the oligosaccharidic skeletons of the compounds 13 are rather rigid, especially the -d-Hex(NAc)-(14)-[-Neu5Ac-(23)]--d-Galp fragments. The - Neu5-Ac-(23)--d-Galp linkage occurred in two different energy minima in the three-dimensional structure of the compounds 13 in aqueous solution. Experimental data and dynamics simulations supported the finding that the higher energy rotamer (CHEAT forcefield) was abundant in compounds 1 and 3 due to the existence of a hydrogen bond between the carboxyl group of the sialic acid and the acetamido group of the terminal monosaccharide (GalNAc or GlcNAc) unit. The conformational similarity between 1 and 3 leads to the suggestion that also their activities will be alike.  相似文献   

9.
Two particular types of sialoglycoproteins have been detected in fish: polysialoglycoproteins containing 28-linked polysialic acid (8Neu5Gc2) n present in unfertilized Salmonidae fish eggs, and glycoproteins bearing oligo/polymers of deaminated neuraminic acids (KDN) found in the vitelline envelope of the eggs and ovarian fluid. We report the preparation and characterization of a monoclonal antibody specifically recognizing oligo/polymers of KDN sequences in glycoproteins and its application in immunohistochemistry. Fusion of spleen cells from a BALB/c mouse immunized with a KDN-rich glycoprotein (KDN-gp) containing (8KDN2) n 6(KDN23Gal13GlNAc13) GalNAc1 residues, with mouse myeloma cells yielded a hybrid cell line producing a monoclonal antibody that bound to KDN-gp, but not to KDN-gp depleted of KDN residues. The specificity of the monoclonal antibody, designated mAb.kdn8kdn, was determined by an enzyme-linked immunosorbent assay using KDN-gp samples that varied in KDN content. These antigens were prepared by the selective removal of KDN residues from the native KDN-gp. The mAb.kdn8kdn reacted most strongly with the intact KDN-gp and less strongly with KDN-gp samples containing decreased numbers of KDN residues. The mAb.kdn8kdn was shown specifically to recognize the 28-linked oligo/polyKDN sequences, (8KDN2) n , and to be able to distinguish specifically (8KDN2) n chains from (8Neu5Ac2) n and (8Neu5Gc2) n chains. The antibody was used successfully for the immunohistochemical detection of reactive KDN epitopes in sections of paraffin embedded rat pancreas. Several controls verified the specificity of the immunohistochemical staining, thus providing the first demonstration of (8KDN2) n sequences in a mammalian tissue. The mAb.kdn8kdn can now be used to search further for glycoconjugates containing (8KDN2) n chains and will facilitate studies on their biosynthesis, intracellular localization and function.  相似文献   

10.
In the homothallic P/d sex interconversion system in a strain of a fission yeast (Schizosaccharomyces pombe), Pd is apparently twice as frequent as dP. This is interpreted to mean that Pd occurs before DNA replication, whereas dP occurs after. But the probabilities of their occurrence within a cell cycle are about the same (1 in 27 cell divisions).  相似文献   

11.
Summary The agglutinin isolated from the seeds of Maclura pomifera (MPA) recognizes a mucin-type disaccharide sequence, Gal13GalNAc (T) on a human erythrocyte membrane. We have utilized the enzyme-linked lectinosorbent assay (ELLSA) and inhibition assay to more systematically analyze the carbohydrate specificity of MPA with glyco-recognition factors and mammalian Gal/GalNAc structural units in lectin–glycoform interactions. From the results, it is concluded that the high densities of polyvalent GalNAc1Ser/Thr (Tn) and Gal13GalNAc1Ser/Thr (T) glycotopes in macromolecules are the most critical factors for MPA binding, being on a nanogram basis 2.0 × 105, 4.6 × 104 and 3.9 × 104 more active than monovalent Gal, monomeric T and Tn glycotope, respectively. Other carbohydrate structural units in mammalian glycoconjugates, such as human blood group Sd (a+) related disaccharide (GalNAc14Gal) and Pk/P1 active disaccharide (Gal14Gal) were inactive. These results demonstrate that the configurations of carbon-4 and carbon-2 are essential for MPA binding and establish the importance of affinity enhancement by high-density polyvalencies of Tn/T glycotopes in MPA–glycan interactions. The overall binding profile of MPA can be defined in decreasing order as high density of polyvalent Tn/T (M.W. > 4.0 × 104) >> Tn-containing glycopeptides (M.W. < 3.0 × 103) > monomeric T/Tn and P (GalNAc13Gal) > GalNAc > Gal >> Man, LAra, DFuc and Glc (inactive). Our findings should aid in the selection of this lectin for elucidating functions of carbohydrate chains in life processes and for applications in the biomedical sciences.  相似文献   

12.
A novel syrup containing neofructo-oligosaccharides was produced from sucrose (Brix 70) by whole cells of Penicillium citrinum. The efficiency of fructo-oligosaccharides production was more than 55% and those of the main carbohydrate components, 1-kestose (Fruf 21Fruf 21 Glc), nystose (Fruf 21Fruf 21 Fruf 21 Glc) and neokestose (Fruf 26 Glc12 Fruf), were 22, 14 and 11%, respectively.  相似文献   

13.
Four new Proteus O-specific polysaccharides were isolated by mild acid degradation from the lipopolysaccharides of P. penneri 28 (1), P. vulgaris O44 (2), P. mirabilis G1 (O3) (3), and P. myxofaciens (4), and their structures were elucidated using NMR spectroscopy and chemical methods. They were found to contain non-carbohydrate organic acids, including ether-linked lactic acid and amide-linked amino acids, and the following structures of the repeating units were established: 3)--L-QuipNAc-(13)--D-GlcpNAc-(16)--D-GlcpNAc-(1 (S)-Lac-(2–3) (1) 4)--D-GlcpA-(13)--D-GalpNAc-(14)--D-Glcp-(13)--D-Galp-(14)--D-GalpNAc-(1 L-Ala-(2–6) (2) 3)--D-GalpNAc-(16)--D-GalpNAc-(14)--D-GlcpA-(1 L-Lys-(2–6)--D-GalpA-(14) (3) 4)--D-GlcpA-(16)--D-GalpNAc-(16)--D-GlcpNAc-(13)--D-GlcpNAc-(1 (R)-aLys-(2–6) (4) where (S)-Lac and (R)-aLys stand for (S)-1-carboxyethyl (residue of lactic acid) and N-[(R)-1-carboxyethyl]-L-lysine (alaninolysine), respectively. The data obtained in this work and earlier serve as the chemical basis for classification of the bacteria Proteus.  相似文献   

14.
Summary A balanced translocation was found in a normal female with a history of four abortions. On the basis of the Giemsa-banding pattern the abnormality was interpreted as to be a translocation of a part of the long arm of chromosome 13 to the short arm of chromosome 7:t(7;13)(7qter7p22::13q1413qter;13q1413pter::7p227pter). Problems in genetic counseling are discussed with respect to this case.Supported by the Forschungsprojekt Medizinische und soziale Probleme der menschlichen Reproduktion des Ministeriums für Gesundheitswesen der DDR.  相似文献   

15.
A bacterium isolated from soil and identified asAgrobacterium sp produced a water-soluble extracellular polysaccharide capable of producing highly viscous solutions. Gas chromatographic analysis revealed a sugar composition of glucose, galactose and mannose in the molar ratio of 7.52.41, together with 3.7% (w/w) pyruvic acid. Methylation analyses showed the presence of (13)-, (14)- and (16)-linked glucose, (13)- and (14, 16)-linked galactose and a small portion of (13)-linked mannose residues. Succinic acid was not present. The molecular weight of the polysaccharide was estimated by light scattering to be 2×106 Da. The viscosity of solutions containing the polysaccharide remained constant from pH 3 to 11, and decreased by 50% when heated from 5 to 55°C. Maximum yield of the polysaccharide, 20 g L–1, was reached in 48 h at 30°C incubation.  相似文献   

16.
A newly generated monoclonal antibody, YB-2, reacts simultaneously with Y (Fuc12Gal14[Fuc13]GlcNAc), Leb (fuc12Gal13[Fuc14]GlcNAc) and H type 2 (Fuc12Gal14GlcNAc) antigens (Jpn J Cancer Res 1993: 84; 641-8). Since these antigens have been reported to be expressed strongly in malignant colorectal tissues, we investigated the usefulness of this antibody as an immunochemical tool for diagnosis of colorectal cancer. The rate of positive staining with YB-2 antibody in colorectal carcinoma (n=101), adenoma (n=26) and normal tissues (n=25) was 95.0, 50.0 and 12.0%, respectively. The specimens with negative staining were restricted in Dukes' A patients but 75% of Dukes' C patients were strongly positive. The intensity of positive staining with YB-2 antibody was also significantly related to the clinico-pathological features such as the depth of invasion, metastasis, histological types and tumor location. Moreover, the 5-year survival in patients whose tumors were positive with YB-2 antibody was found to be significantly low. Therefore, YB-2 antibody could be useful for immunodiagnosis and, possibly, immunotherapy of colorectal carcinoma.  相似文献   

17.
As part of a program to explore the structural requirement of N-glycans in the carbohydrate-mediated biological interactions, N-linked pentasaccharide core structure was stereochemically modified in terms of glycosidic linkage. Three isomers, -D-Man-(13)-[-D-Man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, -D-Man-(13)-[-D-Man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, and -D-Man-(13)-[-D-man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, were synthesized. Synthesis of the pentasaccharide with natural linkage is also described.  相似文献   

18.
Summary Most cell wall components are carbohydrate including the major matrix polysaccharides, pectins and hemicelluloses, and the arabinogalactan-protein proteoglycans. Both types of molecules are assembled in the Golgi apparatus and transported in secretory vesicles to the cell surface. We have employed antibodies specific to -(16) and -(14)-D-galactans, present in plant cell wall polysaccharides, in conjunction with immunofluorescence and electron microscopy to determine the location of the galactan-containing components in the cell wall and Golgi stacks of flax root tip tissues. Immunofluorescence data show that -(14)-D-galactan epitopes are restricted to peripheral cells of the root cap. These epitopes are not expressed in meristematic and columella cells. In contrast, -(16)-D-galactan epitopes are found in all cell types of flax roots. Immunogold labeling experiments show that both epitopes are specifically located within the wall immediately adjacent to the plasma membrane. They are also detected in Golgi cisternae and secretory vesicles, which indicates the involvement of the Golgi apparatus in their synthesis and transport. These findings demonstrate that the synthesis and localization of -(14)-D-galactan epitopes are highly regulated in developing flax roots and that different -linked D-galactans associated with cell wall polysaccharides are expressed in a cell type-specific manner.  相似文献   

19.
The lectin extracted from the seeds of Salvia sclarea (SSL) recognizes the Tn antigen (GalNAc 1Ser/Thr) expressed in certain human carcinomas. In previous studies, knowledge of the binding properties of SSL was restricted to GalNAc1 related oligosaccharides and glycopeptides. Thus, the requirements of functional groups in monosaccharide and high-density polyvalent carbohydrate structural units for SSL binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested for interaction, a high density of exposed Tn-containing glycoproteins such as in the armadillo salivary Tn glycoprotein and asialo ovine salivary glycoprotein reacted best with SSL. When the gps were tested for inhibition of SSL binding, which was expressed as 50% nanogram inhibition, the high density polyvalent Tn present in macromolecules was the most potent inhibitor. Among the monosaccharide and carbohydrate structural units studied, which were expressed as nanomole inhibition, GalNAc 13GalNAc 13Gal 14Gal 14Glc (Fp), GalNAc 13Gal 14Glc (AL), GalNAc 13GalNAc 1Me (F), GalNAc 13GalNAc 1Me (F ) and GalNAc 1 Ser/Thr (Tn) were the most active ligands, being 2.5–5.0× 103 and 1.25–2.5 times more active than Gal and GalNAc, respectively. From the results, it is suggested that the combining site of SSL is a shallow groove type, recognizing the monosaccharide of GalNAc as the major binding site or Tn up to the Forssman pentasaccharide (Fp). It can be concluded that the three critical factors for SSL binding are the –NH CH3CO at carbon-2 in Gal, the configuration of carbon-3 in GalNAc, and the polyvalent Tn (GalNAc 1Ser/Thr) present in macromolecules. These results should assist in understanding the glyco-recognition factors involved in carbohydrate–lectin interactions in biological processes. The effect of the polyvalent F , F and GalNAc 13Gal 1 (P ) glycotopes on binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

20.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号