首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pre-tRNA processing enzyme ribonuclease P is a ribonucleoprotein. In Escherichia coli assembly of the holoenzyme involves binding of the small (119 amino acid residue) C5 protein to the much larger (377 nucleotide) P RNA subunit. The RNA subunit makes the majority of contacts to the pre-tRNA substrate and contains the active site; however, binding of C5 stabilizes P RNA folding and contributes to high affinity substrate binding. Here, we show that RNase P ribonucleoprotein assembly also influences the folding of C5 protein. Thermal melting studies demonstrate that the free protein population is a mixture of folded and unfolded conformations under conditions where it assembles quantitatively with the RNA subunit. Changes in the intrinsic fluorescence of a unique tryptophan residue located in the folded core of C5 provide further evidence for an RNA-dependent conformational change during RNase P assembly. Comparisons of the CD spectra of the free RNA and protein subunits with that of the holoenzyme provide evidence for changes in P RNA structure in the presence of C5 as indicated by previous studies. Importantly, monitoring the temperature dependence of the CD signal in regions of the holoenzyme spectra that are dominated by protein or RNA structure permitted analysis of the thermal melting of the individual subunits within the ribonucleoprotein. These analyses reveal a significantly higher Tm for C5 when bound to P RNA and show that unfolding of the protein and RNA are coupled. These data provide evidence for a general mechanism in which the favorable free energy for formation of the RNA-protein complex offsets the unfavorable free energy of structural rearrangements in the RNA and protein subunits.  相似文献   

2.
Loria A  Pan T 《Nucleic acids research》2001,29(9):1892-1897
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5′-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activity of this C-domain–P protein complex. The C-domain forms a specific complex with the P protein with a binding constant of ~0.1 µM. The C-domain–P protein complex and the holoenzyme are equally efficient in cleaving single-stranded RNA (~0.9 min–1 at pH 7.8) and substrates with a hairpin–loop 3′ to the cleavage site (~40 min–1). The holoenzyme reaction is much more efficient with a pre-tRNA substrate, binding at least 100-fold better and cleaving 10–500 times more efficiently. These results demonstrate that the RNase P holoenzyme is functionally constructed in three parts. The catalytic domain alone contains the active site, but has little specificity and affinity for most substrates. The specificity and affinity for the substrate is generated by either the specificity domain of RNase P RNA binding to a T stem–loop-like hairpin or RNase P protein binding to a single-stranded RNA. This modular construction may be exploited to obtain RNase P-based ribonucleoprotein complexes with altered substrate specificity.  相似文献   

3.
The ribonucleoprotein enzyme RNase P processes all pre-tRNAs, yet some substrates apparently lack consensus elements for recognition. Here, we compare binding affinities and cleavage rates of Escherichia coli pre-tRNAs that exhibit the largest variation from consensus recognition sequences. These results reveal that the affinities of both consensus and nonconsensus substrates for the RNase P holoenzyme are essentially uniform. Comparative analyses of pre-tRNA and tRNA binding to the RNase P holoenzyme and P RNA alone reveal differential contributions of the protein subunit to 5' leader and tRNA affinity. Additionally, these studies reveal that uniform binding results from variations in the energetic contribution of the 5' leader, which serve to compensate for weaker tRNA interactions. Furthermore, kinetic analyses reveal uniformity in the rates of substrate cleavage that result from dramatic (> 900-fold) contributions of the protein subunit to catalysis for some nonconsensus pre-tRNAs. Together, these data suggest that an important biological function of RNase P protein is to offset differences in pre-tRNA structure such that binding and catalysis are uniform.  相似文献   

4.
Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the 5′ maturation of precursor transfer RNA in the presence of magnesium ions. The bacterial RNase P holoenzyme consists of one catalytically active RNA component and a single essential but catalytically inactive protein. In contrast, yeast nuclear RNase P is more complex with one RNA subunit and nine protein subunits. We have devised an affinity purification protocol to gently and rapidly purify intact yeast nuclear RNase P holoenzyme for transient kinetic studies. In pre-steady-state kinetic studies under saturating substrate concentrations, we observed an initial burst of tRNA formation followed by a slower, linear, steady-state turnover, with the burst amplitude equal to the concentration of the holoenzyme used in the reaction. These data indicate that the rate-limiting step in turnover occurs after pre-tRNA cleavage, such as mature tRNA release. Additionally, the steady-state rate constants demonstrate a large dependence on temperature that results in nonlinear Arrhenius plots, suggesting that a kinetically important conformational change occurs during catalysis. Finally, deletion of the 3′ trailer in pre-tRNA has little or no effect on the steady-state kinetic rate constants. These data suggest that, despite marked differences in subunit composition, the minimal kinetic mechanism for cleavage of pre-tRNA catalyzed by yeast nuclear RNase P holoenzyme is similar to that of the bacterial RNase P holoenzyme.  相似文献   

5.
6.
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.  相似文献   

7.
Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein–RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein–protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.  相似文献   

8.
9.
Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.  相似文献   

10.
The human ribonucleoprotein ribonuclease P (RNase P), processing tRNA, has at least 10 distinct protein subunits. Many of these subunits, including the autoimmune antigen Rpp38, are shared by RNase MRP, a ribonucleoprotein enzyme required for processing of rRNA. We here show that constitutive expression of exogenous, tagged Rpp38 protein in HeLa cells affects processing of tRNA precursors. Alterations in the site-specific cleavage and in the steady-state level of 3′ sequences of the internal transcribed spacer 1 of rRNA are also observed. These processing defects are accompanied by selective shut-off of expression of Rpp38 and by low expression of the tagged protein. RNase P purified from these cells exhibits impaired activity in vitro. Moreover, inhibition of Rpp38 by the use of small interfering RNA causes accumulation of the initiator methionine tRNA precursor. Expression of other protein components, but not of the H1 RNA subunit, is coordinately inhibited. Our results reveal that normal expression of Rpp38 is required for the biosynthesis of intact RNase P and for the normal processing of stable RNA in human cells.  相似文献   

11.
12.
An essential protein-binding domain of nuclear RNase P RNA   总被引:5,自引:3,他引:2  
Eukaryotic RNase P and RNase MRP are endoribonucleases composed of RNA and protein subunits. The RNA subunits of each enzyme share substantial secondary structural features, and most of the protein subunits are shared between the two. One of the conserved RNA subdomains, designated P3, has previously been shown to be required for nucleolar localization. Phylogenetic sequence analysis suggests that the P3 domain interacts with one of the proteins common to RNase P and RNase MRP, a conclusion strengthened by an earlier observation that the essential domain can be interchanged between the two enzymes. To examine possible functions of the P3 domain, four conserved nucleotides in the P3 domain of Saccharomyces cerevisiae RNase P RNA (RPR1) were randomized to create a library of all possible sequence combinations at those positions. Selection of functional genes in vivo identified permissible variations, and viable clones that caused yeast to exhibit conditional growth phenotypes were tested for defects in RNase P RNA and tRNA biosynthesis. Under nonpermissive conditions, the mutants had reduced maturation of the RPR1 RNA precursor, an expected phenotype in cases where RNase P holoenzyme assembly is defective. This loss of RPR1 RNA maturation coincided, as expected, with a loss of pre-tRNA maturation characteristic of RNase P defects. To test whether mutations at the conserved positions inhibited interactions with a particular protein, specific binding of the individual protein subunits to the RNA subunit was tested in yeast using the three-hybrid system. Pop1p, the largest subunit shared by RNases P and MRP, bound specifically to RPR1 RNA and the isolated P3 domain, and this binding was eliminated by mutations at the conserved P3 residues. These results indicate that Pop1p interacts with the P3 domain common to RNases P and MRP, and that this interaction is critical in the maturation of RNase P holoenzyme.  相似文献   

13.
Ribonuclease P (RNase P) is a ribozyme required for the 5' maturation of all tRNA. RNase P and the ribosome are the only known ribozymes conserved in all organisms. We set out to determine whether this ribonucleoprotein enzyme interacts with other cellular components, which may imply other functions for this conserved ribozyme. Incubation of the Bacillus subtilis RNase P holoenzyme with fractionated B. subtilis cellular extracts and purified ribosomal subunits results in the formation of a gel-shifted complex with the 30S ribosomal subunit at a binding affinity of approximately 40 nM in 0.1 M NH(4)Cl and 10 mM MgCl(2). The complex does not form with the RNase P RNA alone and is disrupted by a mRNA mimic polyuridine, but is stable in the presence of high concentrations of mature tRNA. Endogenous RNase P can also be detected in the 30S ribosomal fraction. Cleavage of a pre-tRNA substrate by the RNase P holoenzyme remains the same in the presence of the 30S ribosome, but the cleavage of an artificial non-tRNA substrate is inhibited eightfold. Hydroxyl radical protection and chemical modification identify several protected residues located in a highly conserved region in the RNase P RNA. A single mutation within this region significantly reduces binding, providing strong support on the specificity of the RNase P-30S ribosome complex. Our results also suggest that the dimeric form of the RNase P is primarily involved in 30S ribosome binding. We discuss several models on a potential function of the RNase P-30S ribosome complex.  相似文献   

14.
RNase MRP and RNase P share a common substrate.   总被引:4,自引:0,他引:4       下载免费PDF全文
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that processes RNA from the mammalian mitochondrial displacement loop containing region. RNase P is a site-specific ribonucleoprotein endoribonuclease that processes pre-tRNAs to generate their mature 5'-ends. A similar structure for the RNase P and RNase MRP RNAs and a common cleavage mechanism for RNase MRP and RNase P enzymes have been proposed. Experiments with protein synthesis antibiotics have shown that both RNase MRP and RNase P are inhibited by puromycin. We also show that E. coli RNase P cleaves the RNase MRP substrate, mouse mitochondrial primer RNA, exactly at a site that is cleaved by RNase MRP.  相似文献   

15.
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.  相似文献   

16.
Dictyostelium discoideum nuclear RNase P is a ribonucleoprotein complex that displays similarities with its counterparts from higher eukaryotes such as the human enzyme, but at the same time it retains distinctive characteristics. In the present study, we report the molecular cloning and interaction details of DRpp29 and RNase P RNA, two subunits of the RNase P holoenzyme from D. discoideum. Electrophoretic mobility shift assays exhibited that DRpp29 binds specifically to the RNase P RNA subunit, a feature that was further confirmed by the molecular modeling of the DRpp29 structure. Moreover, deletion mutants of DRpp29 were constructed in order to investigate the domains of DRpp29 that contribute to and/or are responsible for the direct interaction with the D. discoideum RNase P RNA. A eukaryotic specific, lysine- and arginine-rich region was revealed, which seems to facilitate the interaction between these two subunits. Furthermore, we tested the ability of wild-type and mutant DRpp29 to form active RNase P enzymatic particles with the Escherichia coli RNase P RNA.  相似文献   

17.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

18.
19.
20.
In HeLa cells, ribonuclease P (RNase P), the tRNA processing enzyme consists of an RNA subunit (H1 RNA) associated with at least nine protein subunits, Rpp14, Rpp20, Rpp21, Rpp29 (hPop4), Rpp30, Rpp38, Rpp40, hPop1, and hPop5 (18.8 kDa). We report here the cloning and immuno-biochemical analysis of Rpp25, another protein subunit of RNase P. Polyclonal rabbit antibodies raised against recombinant Rpp25 recognize their corresponding antigens in RNase P-containing fractions purified from HeLa cells, and they also precipitate active holoenzyme. Furthermore, this protein has general RNA binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号