首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty essential oils from higher plants of Gorakhpur Division (India) were evaluated at 0.36?μl/ml against two pulse beetles, Callosobruchus chinensis L. and C. maculatus F., causing infestation of pigeon pea seeds during storage. Clausena pentaphylla oil was more effective and exhibited absolute repellency against both the insects followed by Ocimum canum, Salvia plebeia and Zingiber zerumbet oils. Among these four oils, C. pentaphylla oil was most toxic and showed 100% mortality of both the insects at 10-μl dosage and 24-h exposure (LD50?=?2.7?μl for C. chinensis & 2.4?μl for C. maculatus). Physical factors, viz. temperature, storage and autoclaving, did not cause any adverse effect on the toxicity of Clausena oil. During in vivo investigation, the oil protected 1?kg of pigeon pea seeds completely without reducing weight loss and seed damage up to 6?months when stored in gunny bags and glass containers. The oil was standardised by determining its various physicochemical properties. Thus, C. pentaphylla oil can be judiciously exploited as herbal insecticide against pulse beetles of pigeon pea seeds during storage.  相似文献   

2.
Aphanomyces euteiches is a polyphagous, homothallic soilborne pathogen producing asexual (zoospores) and sexual (oospores) spores. Even if oospores are essential for disease development and survival, to date, no study has focused on the production rates of oospores or the quality of the offspring produced by oospores. In this study, a nonabrasive oospore extraction method from infected roots of leguminous species (pea, faba bean and vetch) was developed. This methodology includes steps of grinding and filtration. The quality of oospores (viable, dormant and dead) was assessed with tetrazolium bromide staining, and germination of oospores was tested using exudates of peas, faba bean and vetch. The average yield of the extraction method was approximately 21%. Staining revealed some differences between strains and between leguminous species. The germination percentage of oospores extracted from pea, faba bean and vetch was 25%, 62% and 70%, respectively, and a significant difference was observed according to the origin of A. euteiches‐inoculated strains. Application of exudates seems to stimulate the germination of oospores (2% for the control, 18% for pea exudates and 1% for vetch exudates). Differences observed between A. euteiches strains and leguminous species indicate that more knowledge concerning the biology of oospores is needed. This will help to better estimate evolution process of the pathogen and manage resistance and crop successions.  相似文献   

3.
Laboratory studies with Neomegalotomus parvus(Westwood) (Hemiptera: Alydidae) with one nymph per Petri dish in multiple-choice tests indicated that seeds of pigeon pea [Cajanus cajan(L.) Mills.], lablab (Dolichos lablabL.), and soybean [Glycine max(L.) Merrill] were visited before seeds of common bean (Phaseolus vulgarisL.) and rice (Oryza sativaL.). The percentage of individuals engaging in dabbing/antennation resulting in probing, and percentage probing resulting in feeding, were higher on common bean (97%) and pigeon pea (87%) seeds than on lablab (55%), soybean (50%), or rice (5%) seeds. No significant differences were found in preference (number of flanges) among pigeon pea, common bean, and lablab, and preference (insects on foods) varied throughout the assessment period (5 d). In tests using 10 nymphs per dish, pigeon pea was the preferred food (number of flanges and insects on plants) throughout the period (5 d). In no-choice tests, the average duration of a feeding session and the longest feeding session were greater on lablab and common bean than on pigeon pea, soybean, or rice seeds. The number of feeding sessions was greater on seeds of common bean, pigeon pea, and soybean than on those of lablab or rice. Laboratory tests with N. parvusadults indicated that pigeon pea seeds were located faster, followed by common bean, soybean, and rice. When pods were tested, dabbing/antennation time was shorter on pigeon pea than on soybean, and probing time was longer on soybean than on pigeon pea or common bean. On pigeon pea, 100% of the insects probed the host, while on common bean and soybean pods, and on rice panicles, these values dropped to 71.8%, 46.0%, and 10.5%, respectively. Adults showed similar feeding times on pigeon pea, common bean, and soybean pods, but did not feed on rice panicles. Electronmicroscopical analysis showed the presence of two apical lobes with 12 peg sensilla on the labial tip. Sensillum tips were stained with silver nitrate solution, indicating a permeability of the cuticle and, therefore, their function as taste receptors.  相似文献   

4.
When oospores of Phytophthora caetorum from 30-day-old culture were treated with 0.25% KMnO4 for 20 min and incubated at 24°C under light for 10 days, 65–75% germinated on water agar and water agarose but only 1–21% germinated on V-8 agar and S+L agar. Water agarose was selected because germinated oospores formed restrieted colonies on this medium that could be isolated easily. KMnO4 treatment killed sporangia, chlamydospores and mycelial fragments present in oospore suspensions. Under the above conditions, approximately 44% of oospores from 10-day-old culture germinated and the optimum germination rate of about 75% was obtained when oospores reached about 20 days old.  相似文献   

5.
The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp.  相似文献   

6.
A sensitive and rapid ELISA for quantitation of seed globulins is described. This method employs conjugation of pigeon pea (Cajanus cajan) globulin antibodies and the enzyme peroxidase together with dextran. Using this conjugate, proteins as low as 0.1 ng were detected. Dextran conjugate has a ten-fold greater efficiency of quantitating pigeon pea globulins than the commercial goat anti-rabbit IgG conjugate, and is three-fold more efficient than pigeon pea globulin IgG peroxidase conjugate. The method can be conveniently adapted for quantitation of other proteins also.  相似文献   

7.
Oviposition preference and several measures of offspring performance of Helicoverpa armigera (Hübner) were investigated on a subset of its host plants that were selected for their reputed importance in the field in Australia. They included cotton, pigeon pea, sweet corn, mungbean, bean and common sowthistle. Plants were at their flowering stage when presented to gravid female moths. Flowering pigeon pea evoked far more oviposition than did the other plant species and was the most preferred plant for neonate larval feeding. It also supported development of the most robust larvae and pupae, and these produced the most fecund moths. Common sowthistle and cotton were equally suitable to pigeon pea for larval development, but these two species received far fewer H. armigera eggs than did pigeon pea. Mungbean also received relatively few eggs, but it did support intermediate measures of larval growth and survival. Fewest eggs were laid on bean and it was also the least beneficial in terms of larval growth. Among the host plant species tested, only flowering pigeon pea supported a good relationship between oviposition preference of H. armigera and its subsequent offspring performance. Australian H. armigera moths are thus consistent with Indian H. armigera moths in their ovipositional behaviour and larval performance relative to pigeon pea. The results suggest that the host recognition and acceptance behaviour of this species is fixed across its geographical distribution and they support the theory that pigeon pea might be one of the primary host plants of this insect. These insights, together with published results on the sensory responses of the females to volatiles derived from the different host plant species tested here, help to explain why some plant species are primary targets for the ovipositing moths whereas others are only secondary targets of this polyphagous pest, which has a notoriously broad host range. Handling Editor: Joseph Dickens  相似文献   

8.
Pigeon pea is an important legume. Yield losses due to insect pests are enormous in the cultivation of this crop. Expression of cry proteins has led to increased resistance to pests in several crops. We report in this paper, expression of a chimeric cry1AcF (encoding cry1Ac and cry1F domains) gene in transgenic pigeon pea and its resistance towards Helicoverpa armigera. PCR, Southern hybridization, RT‐PCR and Western analysis confirmed stable integration and expression of the cry1AcF gene in pigeon pea transgenics. When screened for efficacy of the transformants for resistance against H. armigera, the transgenics showed not only high mortality of the larva but could also resist the damage caused by the larvae. Analysis for the stable integration, expression and efficacy of the transgenics resulted in the identification of four T3 plants arising from two T1 backgrounds as highly promising. The results demonstrate potentiality of the chimeric cry1AcF gene in developing H. armigera‐resistant pigeon pea.  相似文献   

9.
Studies on the susceptibility of F1 neonates of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) collected from chickpea in Delhi and cotton in Punjab, Haryana and Rajasthan in northern India, to Bacillus thuringiensis ssp. kurstaki HD‐73, and the impact of host crop diets on insect susceptibility, were carried out by diet incorporation bioassays. The susceptibility of F1 neonates of H. armigera to Bacillus thuringiensis ssp. kurstaki HD‐73 ranged from twofold (LC50 96 h, 84.5–164.2 µg (ai) l?1) for chickpea to about fivefold (LC50 96 h, 51.1–247.7 µg (ai) l?1) for cotton. The F1 neonates of insects collected from pearl millet were twice as tolerant as those collected from cotton and sunflower at Sirsa to B. thuringiensis ssp. kurstaki HD‐73, suggesting that there was an influence of host crops on insect susceptibility. Insects originally collected from cotton fields at Bhatinda and reared for four generations on a chickpea‐based meridic diet were used to initiate host‐specific colonies of H. armigera. These host‐specific colonies were allowed to complete one generation on meridic diets prepared with different hosts, viz., cabbage, cauliflower, chickpea, green pea, pearl millet, and pigeon pea. Larvae of H. armigera were heaviest on the 15th day, and had a higher growth rate on a pigeon pea‐based diet than all other host diets. The larval period was shorter on chickpea and pigeon pea, with higher percentage pupation than all other host‐diets. The pupal weight of H. armigera was greater on chickpea and pigeon pea diets than on other host diets. The growth and development of larvae was significantly poorer on pearl millet diet than on other host diets. The F1 neonates of H. armigera belonging to cabbage, cauliflower, and pearl millet host‐specific colonies were more susceptible than those belonging to chickpea, green pea, and pigeon pea host‐specific colonies to B. thuringiensis ssp. kurstaki HD‐73, suggesting the importance of proteinaceous nutrients in tolerance. The F1 neonates of the pearl millet colony of H. armigera grown on a chickpea‐diet for 4 days were significantly more tolerant to B. thuringiensis ssp. kurstaki HD‐73 than those reared on the pearl millet‐based diet. These studies show the impact of the host diet of H. armigera on tolerance to B. thuringiensis.  相似文献   

10.
11.
Abstract An important question in the host‐finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC‐MS). These comprised three green leaf volatiles [(2E)‐hexenal, (3Z)‐hexenylacetate and (3Z)‐hexenyl‐2‐methylbutyrate] and five monoterpenes (α‐pinene, β‐myrcene, limonene, E‐β‐ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.  相似文献   

12.
Two effective strains of green gram rhizobia S24 (slow growing and Hup+) and M11 (fast growing and Hup-) were tested for leghemoglobin production in nodules and effectivity on six species of cow pea miscellany hosts. Both strains nodulate green gram [Vigna radiata (L.) (Wilczek)], black gram [Vigna mungo (L.) (Hepper)], cow pea [Vigna unguiqulata (L.)], moth bean [Vigna aconitifolia (Jacq.) (Marechel)], Cluster bean [Cyamopsis tetragonoloba (L.) (Taub.)] and pigeon pea [Cajanus cajan (L.)]. In all these hosts, nodules formed by strain M11 contained 1.5 to 2 times more leghemoglobin than the nodules formed by strain S24. Gel electrophoresis of nodule contents of different host species showed a high concentration of a fast-moving ferricoxy leghemoglobin in the nodules of plants inoculated with strain M11 as compared to that of strain S24. Strain M11, however, was relatively less effective than strain S24 on black gram, cow pea and moth bean and was at par with the later on green gram, cluster bean and pigeon pea. Hydrogen recycling ability of the strain S24 was observed in nodules of all the host species. The effective functioning of strain S24 at low levels of leghemoglobin suggests an involvement of recycling hydrogenase in maintaining an appropriate oxidation-reduction potential in nodules.Abbreviations Lb Leghemoglobin - Cvr cultivar  相似文献   

13.
The ascigerous teleomorph of Candida lipolytica (Harrison) Diddens et Lodder, previously classified as Endomycopsis lipolytica Wickerham et al. and as Saccharomycopsis lipolytica (Wickerham et al.) Yarrow, has been assigned to the new genus Yarrowia. Yarrowia lipolytica (Wickerham et al.) comb. nov. is the type species for the genus.The remaining species of Saccharomycopsis are revised.  相似文献   

14.
The following procedure has been found helpful in tracing the vascular supply of succulent plants, such as the garden pea, Pisum sativum. It has been used as a supplementary means of study only, to microscopic slides cut serially thru the plant.  相似文献   

15.
Effect of hydrogen uptake positive (Hup+) strain ofRhizobium sp. (pigeon pea) and VAM fungus (Glomus fasciculatum) was studied on the symbiotic parameters of pigeon pea (Cajanus cajan) cv. AL-15 at various levels of phosphorus. The Hup+ Rhizobium strain showed more nodulation, plant biomass and plant nitrogen content than its Hup counterpart. VAM infection in pigeon pea roots helped in translocating phosphorus from the soil and improved nitrogen fixation. Similarly, addition of phosphorus was found to play a positive role in enhancing all these parameters. Dual inoculation of Hup+ Rhizobium strain and VAM significantly increased nodulation, nitrogenase activity, plant nitrogen and phosphorus content and plant biomass compared to single inoculation of either organism and dual inoculation with Hup and VAM fungus.  相似文献   

16.
With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.  相似文献   

17.
In the spring of 2007, a serious disease on amaranth was noticed in several farms in the major amaranth production area in central Taiwan. Abundant oospores were found in the disease tissues. A species of Phytophthora was consistently isolated from disease tissues. The organism formed abundant oospores with smooth walls and with amphigynous antheridia in single culture. Sporangia were partially deciduous with short‐ to medium‐length pedicels. Morphological characteristics of this organism did not match any reported Phytophthora species, and the organism was named Phytophthora amaranthi. Pathogenicity tests and molecular characterization confirmed the identity of the organism as a new pathogen of amaranth and a new species of Phytophthora.  相似文献   

18.
A sterile culture nitrate of Penicillium expansum was shown to induce pisatin synthesis in pea leaf discs. The amount of pisatin produced by pea leaves was shown to decrease as they underwent senescence. N6-benzyladenine delayed senescence, and at the same time maintained the production of pisatin at a high level. In darkness, leaf discs maintained on either benzyl-adenine solution or distilled water produced greater amounts of pisatin than leaf discs which were not treated in this way. Benzyladenine also increased pisatin production by leaf discs kept in the light. The relevance of these results to disease resistance and possible mechanisms involved are discussed.  相似文献   

19.
Bacillus thuringiensis (Bt) isolates were present on the phylloplanes of chickpea (Cicer arietinum), pigeon pea (Cajanus cajan), pea (Pisum sativum) and mung bean (Vigna radiata). Bt index (ratio of the number of Bt colonies to the total number of spore-forming colonies per g of leaves) differed significantly among these plants, with the highest (0.20) in the chickpea phylloplane, followed by pigeon pea (0.17). Bt population of the chickpea phylloplane varied with plant age, being maximal in 45-day-old plants. Diversity was observed among Bt isolates for growth (up to 10-fold difference), antibiotic resistance, PCR product profile and toxicity to Helicoverpa armigera. Two isolates with high activity towards H. armigera were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A regeneration and transformation protocol for ramie (Boehmeria nivea Gaud.) is presented. Regeneration was obtained from leaf discs placed on solid B-5 medium (Gamborg et al. 1968) containing adequate concentrations of auxin and cytokinin. Co-cultivation of leaf discs with Agrobacterium tumefaciens and subsequent regeneration resulted in transgenic plants as shown by Southern blot and analysis of expression of the GUS-marker gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号