首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
4.
5.
6.
Retinal endothelial cells (ECs) and pericytes (PCs) were cloned and cultured from normal and diabetic rabbits to clarify the mechanism of diabetic proliferative retinopathy from the viewpoint of the interaction between ECs and PCs, and phenotypic changes of diabetic cells. PC-conditioned medium (PC-CM) from normal rabbits stimulated in vitro angiogenesis of diabetic ECs more than that of normal ECs. in vitro angiogenesis was also more stimulated in diabetic ECs than in normal ECs by basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1, indicating that diabetic ECs are different from normal ECs in terms of angiogenic potential. One mechanism of this property of diabetic ECs was the acceleration of cell proliferation but not of cell migration, because diabetic ECs grew more rapidly but did not migrate more than normal ECs in response to PC-CM or bFGF. Moreover, PC-CM from diabetic PCs stimulated angiogenesis of normal ECs more than that from normal PCs, indicating that diabetic PCs secreted more angiogenic factor(s) than normal PCs. The angiogenic, mitogenic and migratory activities of PC-CM both from normal and diabetic PCs were similarly inhibited by an anti-bFGF antibody. Western blot analysis revealed this factor to be a bFGF-like molecule. These data indicate that the interaction between ECs and PCs and the phenotypic changes of diabetic ECs and PCs both contribute to the proliferative retinopathy in diabetes.  相似文献   

7.
The redox state of the endothelial cells plays a key role in the regulation of the angiogenic process. The modulation of the redox state of endothelial cells (ECs) could be a viable target to alter angiogenic response. In the present work, we synthesized a redox modulator by caging 5-hydroxy 2-methyl 1, 4-napthoquinone (Plumbagin) on silver nano framework (PCSN) for tunable reactive oxygen species (ROS) inductive property and tested its role in ECs during angiogenic response in physiological and stimulated conditions. In physiological conditions, the redox modulators induced the angiogenic response by establishing ECs cell–cell contact in tube formation model, chorio allontoic membrane, and aortic ring model. The molecular mechanism of angiogenic response was induced by vascular endothelial growth factor receptor 2 (VEGFR2)/p42-mitogen-activated protein kinase signaling pathway. Under stimulation, by mimicking tumor angiogenic conditions it induced cytotoxicity by generation of excessive ROS and inhibited the angiogenic response by the loss of spatiotemporal regulation of matrix metalloproteases, which prevents the tubular network formation in ECs and poly-ADP ribose modification of VEGF. The mechanism of opposing effects of PCSN was due to modulation of PKM2 enzyme activity, which increased the EC sensitivity to ROS and inhibited EC survival in stimulated condition. In normal conditions, the endogenous reactive states of NOX4 enzyme helped the EC survival. The results indicated that a threshold ROS level exists in ECs that promote angiogenesis and any significant enhancement in its level by redox modulator inhibits angiogenesis. The study provides the cues for the development of redox-based therapeutic molecules to cure the disease-associated aberrant angiogenesis.  相似文献   

8.
Y Sato 《Human cell》1998,11(4):207-214
  相似文献   

9.
10.
miR-199a-5p plays a critical role in controlling cardiomyocyte survival. However, its significance in endothelial cell biology remains ambiguous. Here, we report the first evidence that miR-199a-5p negatively regulates angiogenic responses by directly targeting v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1). Induction of miR-199a-5p in human dermal microvascular endothelial cells (HMECs) blocked angiogenic response in Matrigel® culture, whereas miR-199a-5p-deprived cells exhibited enhanced angiogenesis in vitro. Bioinformatics prediction and miR target reporter assay recognized Ets-1 as a novel direct target of miR-199a-5p. Delivery of miR-199a-5p blocked Ets-1 expression in HMECs, whereas knockdown endogenous miR-199a-5p induced Ets-1 expression. Matrix metalloproteinase 1 (MMP-1), one of the Ets-1 downstream mediators, was negatively regulated by miR-199a-5p. Overexpression of Ets-1 not only rescued miR-199a-5p-dependent anti-angiogenic effects but also reversed miR-199a-5p-induced loss of MMP-1 expression. Similarly, Ets-1 knockdown blunted angiogenic response and induction of MMP-1 in miR-199a-5p-deprived HMECs. Examination of cutaneous wound dermal tissue revealed a significant down-regulation of miR-199a-5p expression, which was associated with induction of Ets-1 and MMP-1. Mice carrying homozygous deletions in the Ets-1 gene exhibited blunted wound blood flow and reduced abundance of endothelial cells. Impaired wound angiogenesis was associated with compromised wound closure, insufficient granulation tissue formation, and blunted induction of MMP-1. Thus, down-regulation of miR-199a-5p is involved in the induction of wound angiogenesis through derepressing of the Ets-1-MMP1 pathway.  相似文献   

11.
12.
13.
Induction of SPARC by VEGF in human vascular endothelial cells   总被引:7,自引:0,他引:7  
SPARC/osteonectin/BM-40 is a matricellular protein that is thought to be involved in angiogenesis and endothelial barrier function. Previously, we have detected high levels of SPARC expression in endothelial cells (ECs) adjacent to carcinomas of kidney and tongue. Although SPARC-derived peptide showed an angiogenic effect, intact SPARC itself inhibited the mitogenic activity of vascular endothelial growth factor (VEGF) for ECs by the inhibiting phosphorylation of flt-1 (VEGF receptor 1) and subsequent ERK activation. Thus, the role of SPARC in tumor angiogenesis, stimulation or inhibition, is still unclear. To clarify the role of SPARC in tumor growth and progression, we determined the effect of VEGF on the expression of SPARC in human microvascular EC line, HMEC-1, and human umbilical vein ECs. VEGF increased the levels of SPARC protein and steady-state levels of SPARC mRNA in serum-starved HMEC-1 cells. Inhibitors (SB202190 and SB203580) of p38, a mitogen-activated protein (MAP) kinase, attenuated VEGF-stimulated SPARC production in ECs. Since intact SPARC inhibits phosphorylation ERK MAP kinase in VEGF signaling, it was suggested that SPARC plays a dual role in the VEGF functions, tumor angiogenesis, and extravasation of tumors mediated by the increased permeability of endothelial barrier function.  相似文献   

14.
15.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号