首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A yeast mitochondrial inner membrane hydrophobic protein 30K has been isolated and compared to subunit 32K of the yeast cytochrome bc 1 complex. Both proteins are translated on mitochondrial ribosomes, have nearly the same molecular weight and similar aminoacid compositions. Comparison was carried out by immunological techniques with specific antibodies, and by studying 3 yeast strains having mutations in the COB region of the mitochondrial DNA. Results show that the two proteins are not identical.  相似文献   

5.
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes.  相似文献   

6.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

7.
A non-stoichiometric material [Na4(5′-IMP)2·15H2O]0.2[Na2(Pt(5′-IMP)2 (trimethylenediamine))·13.5H2O]0.8 has been prepared and investigated by single-crystal X-ray methods and 1H and 13C nmr spectroscopy. The compound is isomorphous with the monosodium and disodium salts of 5′-IMP and two Pt(II)-5′-IMP compounds previously reported to be non-stoichiometric. However, the structural changes in the packing motif of the 5′-IMP molecules induced on Pt(II) coordination are uniform only if the 5′-IMP complex containing (NH3)2Pt(II) is stoichiometric. Preliminary studies on the latter complex, synthesized in our laboratories, demonstrate that the complex is indeed stoichiometric.  相似文献   

8.
9.
10.
Soluble ATPase (F1) has been purified from pig heart mitochondria. The purified enzyme had a high specific activity and was homogeneous as checked by ultracentrifugation and electrofocusing. It could be dissociated into subunits by cold-treatment or sodium dodecyl sulfate denaturation. The molecular weights of the two major and three minor subunits could be estimated by sodium dodecyl sulfate gel electrophoresis. The native enzyme had an isoelectric point of 5.2 while the cold-denatured enzyme showed three main bands focusing at pH 5.0, 5.2, and 5.4. Kinetic properties (Vm and Km (atp) have been compared for the soluble and membrane bound ATPase in presence of various anions. Inhibitory effects of Quercetin and other flavonoids have been tested in order to get an insight on the interaction between ATPase and its natural inhibitor.  相似文献   

11.
Drosophila melanogaster Kc cells become refractory toward ecdysteroids after 4 days of exposure to the molting hormone, 20-OH-ecdysone. Associated with the appearance of hormonal insensitivity is a loss of ecdysteroid receptors. Hormone-resistant cells maintain a low level of receptor that is indistinguishable from that of responsive, hormonally naive cells. After extended periods in culture, ecdysteroid receptor content in previously exposed cells returns to that of naive control cells. The reappearance of receptor is coincident with the resumption of hormonally induced growth inhibition.  相似文献   

12.
13.
Concanavalin A binds to and inhibits enzyme activity of the energy transducing ATPase from yeast mitochondria. Activity loss is completely reversed by glucose or α-methyl-d-mannose. Concanavalin A reacts with the F1 portion of the ATPase complex, suggesting that this enzyme unit may be a glycoprotein. A major concanavalin A binding site is associated with the largest subunit of the F1 enzyme.  相似文献   

14.
NADPH-cytochrome c reductase has been isolated from a top-fermenting ale yeast, Saccharomyces cerevisiae (Narragansett strain), after ca. a 240-fold purification over the initial extract of an acetone powder, with a final specific activity (at pH 7.6, 30 °C) of ca. 150 μmol cytochrome c reduced min?1mg?1 protein. The preparation appears to be homogeneous by the criteria of: sedimentation velocity; electrophoresis on cellulose acetate in buffers above neutrality; and by polyacrylamide gel electrophoresis. Although the reductase appeared to partially separate into species “A” and “B” on DEAE-cellulose at pH 8.8, the two species have proven to be indistinguishable electrophoretically (above pH 8) and by sedimentation. By sedimentation equilibrium at 20 °C, a molecular weight of ca. 6.8 (± 0.4) × 104 was obtained with use of a V?20 ° = 0.741 calculated from its amino acid composition. After disruption in 4 m guanidinium chloride- 10 mm dithioerythritol- 1 mm EDTA, pH 6.4 at 20 °C, an M?r of 3.4 (± 0.1) × 104 resulted, which points to a subunit structure of two polypeptide chains per mole. Confirmatory evidence of the two-subunit structure with similar, if not identical, polypeptide chains was obtained by polyacrylamide gel electrophoresis in dodecyl-sulfate, after disruption in 4 m urea and 2% sodium dodecyl sulfate, and yielded a subunit molecular weight of ca. 4 × 104. Sulfhydryl group titration with 4,4′-dithiodipyridine under acidic conditions revealed one sulfhydryl group per monomer, which apparently is necessary for the catalytic reduction of cytochrome c. NADPH, as well as FAD, protects this-SH group from reaction with 5,5′-dithiobis (2-nitrobenzoate). The visible absorption spectrum of the oxidized enzyme (as prepared) has absorption maxima at 383 and 455 nm, typical of a flavoprotein. Flavin analysis (after dissociation by thermal denaturation of the “A” protein) conducted fluorometrically, revealed the presence of 2.0 mol of FAD per 70,000 g, in confirmation of the deduced subunit structure. The identity of the FAD dissociated from either “A” or “B” protein was confirmed by recombination with apo-d-amino acid oxidase and by thin-layer chromatography. A kinetic approach was used to estimate the dissociation constant for either FAD or FMN (which also yields a catalytically active enzyme) to the apoprotein reductase at 30 °C and pH 7.6 (0.05 m phosphate) and yielded values of 4.7 × 10?8m for FAD and 4.4 × 10?8m for FMN.  相似文献   

15.
16.
The methylester of 5-carboxymethyluridine (mcm5U), its degradation product 5-carboxymethyluridine (cm5U) and the corresponding nucleotide (cm5Up) were isolated from brewer's yeast tRNAIII Arg or from the dodecanucleotide containing the anticodon. Their chromatographic and electrophoretic properties and their UV absorbing spectra were identical to that of the corresponding synthetic compounds. The gas chromatographic behavior and the mass spectrum of mcm5U obtained from tRNAIII Arg and of a synthetic sample were also identical ; the rare occurence of a thermal reciprocal bimolecular methyl-hydrogen transfer in the mass spectrometer ion source was observed. A mild alkaline treatment of tRNAIII Arg leads to the saponification of mcm5U into cm5U (within the tRNA), which can be again esterified in the presence of a yeast homogenate and (methyl-14C) S adenosylmethionine. The radioactivity was found in the mcm5U located in the wobble position of the anticodon of tRNAIII Arg. The presence of this odd nucleotide in that position could possibly restrict the codon-anticodon interaction of tRNAIII Arg.  相似文献   

17.
M Jacquet  D Caput  E Falcoff  R Falcoff  F Gros 《Biochimie》1977,59(2):189-195
Complementary DNA (cDNA) from Mengo virus RNA has been synthesized and used as a probe to measure the synthesis and accumulation of viral RNA in Mengo infected L cell cultures, treated or untreated with interferon. Under experimental conditions used (200 units interferon/ml and 50 virus plaque-forming units/cell) results show that there is some synthesis of Mengo virus RNA in cells treated with interferon. One hour after infection, treated cells contain three times less viral RNA than untreated cells; five hours after infection, this difference has increased to ten fold. As in the control, no fragmented Mengo virus RNA molecules were found in interferon treated cells. The smaller recovery of infectious particles from interferon treated cells as compared to RNA accumulation suggests that not only RNA accumulation is inhibited but also a step posterior in viral maturation.  相似文献   

18.
l-Galactonolactone oxidase is believed to catalyze the last step of l-ascorbic acid biosynthesis in yeast. A highly purified preparation of this enzyme from baker's yeast was obtained by a seven-step procedure. The molecular weight of the purified enzyme was estimated to be 290,000 by gel filtration, while the dissociated enzyme possessed a molecular weight of 56,000, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme catalyzes the reaction, l-galactono-γ-lactone + O2 → l-ascorbic acid + H2O2. l-Gulono- and d-altrono-γ-lactone also serve as substrates. The enzyme was found to contain a flavin which is covalently bound to the enzyme protein. By comparing the properties of this enzyme with those of isofunctional enzymes of higher plants and animals, it became evident that the yeast enzyme is more like the l-gulonolactone oxidase (EC 1.1.3.8) of animals than the l-galactonolactone dehydrogenase (EC 1.3.2.3) of higher plants. Since phylogenetically lower animals are reported to lack l-gulonolactone oxidase, the finding of a similar enzyme in yeast is of great interest.  相似文献   

19.
The basal- and allylisopropylacetamide-induced activities of the first enzyme of heme biosynthesis, δ-aminolevulinic acid synthase (ALAS) were measured in hepatic mitochondria and cytosol of young, adult, and aged Fisher 344 rats. The total cellular ALAS activity induced by allylisopropylacetamide decreased 67% with age. The specific activity of mitochondrial ALAS in normal and induced animals decreased with aging when assayed in whole or broken mitochondria. The levels of ALAS which accumulated in the cytosol after allylisopropylacetamide administration were proportionally greater in both the young and senescent than in the mature animals. During aging, no evidence for a fragile population of mitochondria in either normal or induced animals was observed suggesting that mitochondrial matrix proteins are not released during homogenization. The hepatic mitochondrial content decreased during aging when calculated using both a membrane-bound marker enzyme cytochrome oxidase and a matrix marker enzyme citrate synthase and was unaffected by allylisopropylacetamide treatment. This reduced mitochondrial content further diminishes the level of functional ALAS available in the liver during senescence. This study confirms the age-dependent decrease in mitochondria ALAS in normal and induced animals and also suggests an age-related change in the process by which cytosolic ALAS is translocated into the mitochondria.  相似文献   

20.
Oxidative phosphorylation and 1 α,25-dihydroxyvitamin D3 [lα,25-(OH)2D3]synthesis in isolated mitochondria were decreased by the addition of strontium. Calcium effected a similar inhibition of 1α,25-(OH)2D3 synthesis which correlated with cation-induced mitochondrial swelling. The ultrastructural changes were found to be a consequence of experimental conditions and not a prerequisite for suppressed 1α,25-(OH)2D3 synthesis. Dietary administration of strontium or calcium also resulted in a decreased rate of 1α,25-(OH)2D3 synthesis; however, the decrease in 1-hydroxylase activity was accompanied by an induction of mitochondrial 25-hydroxyvitamin D3 24-hydroxylase activity. Such an in vivo-prompted mitochondrial response occurred in the absenee of morphological changes or extensive loss of oxidative phosphorylation activity. In contrast, no induction of 24-hydroxylase activity could be observed in acute studies using isolated mitochondria. Therefore, the in vitro action of calcium and strontium does not appear to reflect the in vivo mechanism whereby the cations act to change renal 25-hydroxyvitamin D3 (25-OHD3) hydroxylation. Results from in vitro studies corcerning the action of calcium to alter renal 25-OHD3 metabolism should be interpreted in light of the cation's capacity to decrease oxidative phosphorylation and the subsequent intramitochondrial generation of NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号