首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In host-range studies, bean common mosaic virus strains (BCMV-NL1, -NL3 and -NY 15) usually induced distinct systemic symptoms in susceptible bean cultivars and latent infection in several Vigna genotypes (except NY15 which gave mosaic symptoms in the latter), while blackeye cowpea mosaic virus (B1CMV-W) caused distinct systemic symptoms in several Vigna genotypes and only weak systemic symptoms in a few bean genotypes only. Biologically, B1CMV-W was closest to BCMV-NY15 and less close to -NL1. When using antisera to the three BCMV strains and five strains of B1CMV (including a strain originally considered cowpea aphid-borne mosaic virus CAMV-Mor) in SDS-immunodiffusion and ELISA, BCMV-NL1 and -NY15 were found to be closely related to each other and to BICMV-Fla, -NR and -W, and less closely to BICMV-Ind and -Mor. Serological relationships of BCMV-NL1 and -NY15 to BCMV- NL3 were more distant, which is in line with the biological distinction of NL3 in causing temperature-independent necrosis in bean cultivars with the necrosis gene I. PAGE analysis of coat proteins revealed that the three strains of BCMV and B1 CMV-W have similar but non-identical molecular masses. Although molecular hybridisation may further elucidate quantitative relationships between potyvir-uses, variation within and among the potyviruses may continue to pose problems in their classification and identification.  相似文献   

2.
Earlier attempts to discriminate serologically strains NL1, NL3 and NY15 of bean common mosaic virus (BCMV) and strain W of blackeye cowpea mosaic virus (B1CMV) had been unsuccessful. Antibodies directed towards N- and C-, or N-terminal peptide regions of the coat proteins of the above strains enabled the distinction between B1CMV-W, BCMV-NY15 and BCMV-NL3 in electroblot immunoassay and in ELISA. The distinction was better with antibodies directed towards N-termini than with those to N- and C-termini. Strain NL1 of BCMV cross-reacted with both B1CMV-W and BCMV-NY15, but not with BCMV-NL3. Taxonomic implications of these findings are discussed.  相似文献   

3.
Spiroplasma strains from plant and arthropod hosts, and from surfaces of flowers, were classified into three serological groups (designated I, II, and III) based on results from growth-inhibition tests. No significant cross reactions were observed among groups. The groupings were confirmed by ring-interface precipitin and microprecipitin tests, using membrane preparations as test antigens, and by organism-deformation tests. Serogroup I contained three subgroups: subgroup A (Spiroplasma citri strains Maroc R8A2 and C189), subgroup B (strain AS 576 and closely related strains from honeybee or flowers), and subgroup C (corn stunt spiroplasma strains). Serogroup II contained strains 23-6 and 27-31 isolated from flowers of the tulip tree (Liriodendron tulipifera L.) growing in Maryland. Serogroup III contained strains SR 3 and SR 9 isolated from flowers of the tulip growing in Connecticut. The subgroups of serogroup I were based on organism deformation, microprecipitin, and ring-interface precipitin tests. The data are consistent with the hypothesis that the three serogroups represent no less than three distinct spiroplasma species.  相似文献   

4.
Three strains of cauliflower mosaic virus (CaMV) designated NVRS, CM4-184 and PK caused respectively severe, moderate and mild reactions in turnip cv. Just Right plants and severe, mild and symptomless reactions in Brussels sprout cv. Fasolt plants. Chlorotic local lesions formed consistently in the leaves of young turnip plants when inoculated with each of the virus strains. Lesions were suitable for infectivity assay of crude and purified preparations of the virus. Three variants of the NVRS strain were isolated by single-lesion transfer after treatment of the virus with nitrous acid (pH 5.0) and two variants were obtained after treating the virus in acetate buffer at the same pH. One of the variants (designated V3) caused symptomless infection in turnip and Brussels sprout plants. In cross-protection tests, Brussels sprout plants infected symptomlessly with the PK, CM4-184 or the V3 strains, subsequently resisted infection by the severe NVRS strain.  相似文献   

5.
6.
A disease of spiraea(Spiraea xvanhouttei) manifested in leaves by very mild, mostly hardly perceptible mosaic, was found to be caused by cucumber mosaic virus (CMV) infection. The proof was given on the basis of responce of differential plants after virus transmission, by immunosorbent electron microscopy and ELISA.  相似文献   

7.
Resistance of transformed and non-transformed spring oilseed rape cv. HM-81 to the infection with cauliflower mosaic virus (CaMV), turnip yellow mosaic virus (TYMV) and turnip mosaic virus (TuMV) was studied, to determine the influence of transformation on susceptibility of plants to viruses. For experiments the non-segregating R 1 generation of primary transformant HM-81-JZ and control plants of cv. HM-81 were used. The primary transformant was obtained by inoculation of stems withAgrobacterium rhizogenes 15834. All transformed plants of R 1 generation had typically „transformed“ phenotype. No significant differences were revealed in the resistance of both transformed and non-transformed plants to each virus, as proved by qualitative and quantitative ELISA and visual evaluation of symptoms. Transformed plants infected with turnip yellow mosaic virus showed significantly lower reduction of green mass yield than non-transformed. In the case of CaMV and TuMV infection reduction of yield of transformed and non-transformed plants was almost the same.  相似文献   

8.
Ryegrass mosaic virus (RMV) was reliably detected in both perennial (S24) and Italian (S22) ryegrass, by enzyme-linked immunosorbent assay (ELISA) when plants had been infected for 8 wk. ELISA detected more infections in field-grown perennial ryegrass cv. Premo than either visual assessment or electron microscopy. However, with plants of Italian ryegrass cultivars only recently infected with RMV, positive reactions were more difficult to separate from the reactions of RMV-free plants, which varied considerably with cultivar, some giving high absorbance values. Immunosorbent electron microscopy showed that the RMV antiserum also contained antibodies to ryegrass seed-borne virus (RGSV), suggesting that these high values were caused by RGSV infection in the material tested.  相似文献   

9.
10.
11.
Occurrence of fungally transmitted wheat mosaic viruses in China   总被引:3,自引:0,他引:3  
A soil-borne mosaic disease of winter wheat in Sichuan, Shaanxi, Hubei and Henan provinces was associated with infection by a virus with filamentous particles and that in Shandong, Anhui, Jiangsu and Zhejiang provinces by co-infection with this virus and soil-borne wheat mosaic virus. The virus with filamentous particles was identified serologically, by particle sizes, cytopathology and the molecular weights of the coat protein and the two RNA species to be either wheat spindle streak mosaic virus (WSSMV) or wheat yellow mosaic virus. These viruses are probably isolates of the same virus and the name WSSMV is preferred. In baiting tests using infested soil, the dilution endpoints for detecting WSSMV were 1/625-1/15625, and for the fungus vector, Polymyxa graminis, 1/3125-1/15625.  相似文献   

12.
K Takada  N Shimizu  M Oguro    Y Ono 《Journal of virology》1986,60(1):324-330
Baby hamster kidney cells were transfected with BamHI fragments of Epstein-Barr virus (EBV) DNA (B95-8 strain) cloned into the pLTR vector containing retroviral enhancer and promoter sequences. Seventeen fragments (BamHI-A, -B, -C, -D, -E, -G, -K, -L, -M, -O, -P, -Q, -R, -U, -V, -X, and -Z) expressed antigenically distinct EBV-specific products recognized by EBV-immune human sera.  相似文献   

13.
One isolate of Mungbean yellow mosaic India virus (MYMIV) of mungbean plants from Sri Ganganagar, Rajasthan, designated as MYMIV-Mg was isolated and DNA-A and DNA-B, the two full length bipartite genomic components of this virus, were cloned. The [α-32P] labeled diagnostic probes specific to these cloned DNA-A and -B of MYMIV-Mg were used to detect the virus infection in infected plants by nucleic acid spot hybridization (NASH) test. The NASH tests detected the MYMIV infection and concentration of viral titre in susceptible, moderately susceptible, resistant and symptomless genotypes of pigeonpea (Cajanus cajan) plants. Fourteen genotypes of pigeonpea were tested against five naturally occurring MYMIV variants viz.,.MYMIV Bg, -MgD, -MoL, -Mg and -Pp1 through viruliferous whitefly (Bemisia tabaci) transmission in greenhouse condition. Disease incidence and severity of MYMIV in different pigeonpea genotypes varied with the variants of MYMIV. Many genotypes of pigeonpea did not produce visible yellow mosaic symptoms after inoculation with MYMIV variants MYMIV-Bg, -MbD and -MoL, although, majority of the symptomless genotypes were found to be infected by MYMIV, as viral DNA was detected by NASH test.  相似文献   

14.
Samples collected in 1994 and 1995 from commercial crops of chickpeas and lentils growing in the agricultural region of south-west Western Australia were tested for infection with alfalfa mosaic (AMV) and cucumber mosaic (CMV) viruses, and for members of the family Potyviridae using enzyme-linked immunosorbent assay (ELISA). In 1994 no virus was detected in the 21 chickpea crops tested but in 1995, out of 42 crops, AMV was found in two and CMV in seven. With lentils, AMV and/or CMV was found in three out of 14 crops in 1994 and 4 out of 13 in 1995, both viruses being detected in two crops in each year. Similar tests on samples from chickpea and lentil crops and plots growing at experimental sites, revealed more frequent infection with both viruses. No potyvirus infection was found in chickpeas or lentils in agricultural areas either in commercial crops or at experimental sites. However, bean yellow mosaic virus (BYMV) was detected along with AMV and CMV in irrigated plots of chickpeas and lentils at a site in Perth. When samples of seed from infected crops or plots of chickpeas and lentils were germinated and leaves or roots of seedlings tested for virus infection by ELISA, AMV and CMV were found to be seed-borne in both while BYMV was seed-borne in lentils. The rates of transmission found through seed of chickpea to seedlings were 0.1–1% with AMV and 0.1–2% with CMV. Seed transmission rates with lentil were 0.1–5% for AMV, 0.1–1% for CMV and 0.8% for BYMV. Individual seed samples of lentil and chickpea sometimes contained both AMV and CMV. With both species, infection with AMV and CMV was sometimes found in commercial seed stocks or seed stocks from multiplication crops of advanced selections nearing release as new cultivars. Seed-borne virus infection has important practical implications, as virus sources can be re-introduced every year to chickpea and lentil crops or plots through sowing infected seed stocks leading to spread of infection by aphid vectors, losses in grain yield and further contamination of seed stocks.  相似文献   

15.
A severe foliar yellow mosaic disease was observed in horse chestnut trees (Aesculus carnea and A. hippocastanum). Reactions in woody indicator plants grafted with diseased horse chestnut suggested the presence of an ilarvirus. Virus isolates obtained by mechanical inoculation of herbaceous test plants reacted with antisera to apple mosaic virus but not with antisera to its serotype prunus necrotic ringspot virus, or to prune dwarf virus. Yellow mosaic was induced in horse chestnut seedlings grafted with tissues from herbaceous hosts infected with horse chestnut isolates or with the European plum line pattern isolate of apple mosaic virus. Virus was detected by enzyme-linked immunosorbent assay (ELISA) in embryo and endosperm of immature seed from infected trees but not in mature seed, or progeny seedlings. Strawberry latent ringspot virus was detected in one of six A. hippocastanum trees with a leaf vein yellows disease.  相似文献   

16.
Sequences within the conserved, aminoacylatable 3' noncoding regions of brome mosaic virus (BMV) genomic RNAs 1, 2, and 3 direct initiation of negative-strand synthesis by BMV polymerase extracts and, like sequences at the structurally divergent but aminoacylatable 3' end of tobacco mosaic virus (TMV) RNA, are required in cis for RNA replication in vivo. A series of chimeric RNAs in which selected 3' segments were exchanged between the tyrosine-accepting BMV and histidine-accepting TMV RNAs were constructed and their amplification was examined in protoplasts inoculated with or without other BMV and TMV RNAs. TMV derivatives whose 3' noncoding region was replaced by sequences from BMV RNA3 were independently replication competent when the genes for the TMV 130,000-M(r) and 180,000-M(r) replication factors remained intact. TMV replicase can thus utilize the BMV-derived 3' end, though at lower efficiency than the wild-type (wt) TMV 3' end. Providing functional BMV RNA replicase by coinoculation with BMV genomic RNAs 1 and 2 did not improve the amplification of these hybrid genomic RNAs. By contrast, BMV RNA3 derivatives carrying the 3' noncoding region of TMV were not amplified when coinoculated with wt BMV RNA1 and RNA2, wt TMV RNA, or all three. Thus, BMV replicase appeared to be unable to utilize the TMV 3' end, and there was no evidence of intervirus complementation in the replication of any of the hybrid RNAs. In protoplasts coinoculated with BMV RNA1 and RNA2, the nonamplifiable RNA3 derivatives bearing TMV 3' sequences gave rise to diverse new rearranged or recombined RNA species that were amplifiable.  相似文献   

17.
Particles resembling those of geminiviruses were found by immunosorbent electron microscopy in extracts of plants infected in India with bhendi yellow vein mosaic, croton yellow vein mosaic, dolichos yellow mosaic, horsegram yellow mosaic, Indian cassava mosaic and tomato leaf curl viruses. All these viruses were transmitted by Bemisia tabaci whiteflies, all reacted with at least one out of ten monoclonal antibodies to African cassava mosaic virus (ACMV), and all reacted with a probe for ACMV DNA-1, but scarcely or not at all with a full-length probe for ACMV DNA-2. Most of the viruses were distinguished by their host ranges when transmitted by whiteflies, and the rest could be distinguished by their pattern of reactions with the panel of monoclonal antibodies. Horsegram yellow mosaic virus was distinguished from Thailand mung bean yellow mosaic virus by its lack of sap transmissibility, ability to infect Arachis hypogaea, failure to react strongly with the probe for ACMV DNA-2 and its pattern of reactions with the monoclonal antibodies. Structures resembling a ‘string of pearls’, but not geminate particles, were found in leaf extracts containing malvastrum yellow vein mosaic virus. Such extracts reacted with two of the monoclonal antibodies, suggesting that this whitefly-transmitted virus too is a geminivirus. All seven viruses from India can therefore be considered whitefly-transmitted geminiviruses.  相似文献   

18.
BSMV (barley stripe mosaic virus) particles were obtained in a pure state from infected host plant tissues of Hordeum vulgare. The three genomic parities (alpha, beta and gamma) were amplified by PCR using specific primers for each particle; each was cloned. Partial sequence of the alpha, beta and gamma segments was determined for the Egyptian isolate of barley stripe mosaic virus (BSMV AE1). Alignment of nucleotide sequences with that of other known strains of the virus, BSMV type strains (CV17, ND18 and China), and the generation of phylogenetic trees was performed. A low level of homology was detected comparing 467 bp of the a and 643 bp of the segments to that of the other strains, and thus BSMV alpha and beta segments were in separate clusters. However, 1154 bp of the gamma segments of BSMV AE1 showed a high level of homology especially to strain BSMV ND18, as they both formed a distinct cluster. Northern blotting of pure BSMV AE1 virus and H. vulgare-infected tissue were compared using an alpha ND18 specific probe. Western blotting using antibodies specific for the coat protein (CP) and the triple gene block 1 (TGB1) protein, which are both encoded by the beta ND18 segment, still indicated a high level of similarity between proteins produced by BSMV ND18 and AE1. We suggest that the BSMV AE1 isolate is a distinct strain of BSMV which reflects the genetic evolutionary divergence among BSMV strains and members of the Hordeivirus group.  相似文献   

19.
Alfalfa mosaic virus (AMV) was isolated from lucerne (Medicago sativa) plants with a variety of disease symptoms in eight of 13 sites in South Australia indicating that the virus is widespread in the state. The host ranges and symptomatology of the virus isolates varied considerably. Twelve selected local lesion isolates were shown to be distinct when mechanically inoculated to a range of plant species and cultivars. However, agar-gel diffusion and enzyme-linked immunoassay tests with polyclonal antisera prepared against glutaraldehyde-fixed virus preparations of the five most readily distinguishable AMV isolates, failed to reveal significant antigenic differences between the 12 virus isolates. This indicates that serological tests with polyclonal antisera can detect a wide range of AMV variants but would be unlikely to differentiate between strains. The wide host range and variability of AMV precluded the grouping of isolates into strains of the virus.  相似文献   

20.
The complete nucleotide sequence of Chinese rape mosaic virus has been determined. The virus is a member of the tobamovirus genus of plant virus and is able to infect Arabidopsis thaliana (L.) Heynh systemically. The analysis of the sequence shows a gene array that seems to be characteristic of crucifer tobamoviruses and which is slightly different from the one most frequently found in tobamoviruses. Based on gene organization and on comparisons of sequence homologies between members of the tobamoviruses, a clustering of crucifer tobamoviruses is proposed that groups the presently known crucifer tobamovirus into two viruses with two strains each. A name change of Chinese rape mosaic virus to oilseed rape mosaic virus is proposed.Abbreviations 2-ME 2-mercaptoethanol - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - UTR untranslated region - MP movement protein - CP capsid protein - CRMV Chinese rape mosaic virus - TVCV turnip vein clearing virus - PaMMV paprika mild mottle virus - PMMV-I pepper mild mottle virus (Italian isolate) - PMMV-S pepper mild mottle virus (Spanish isolate) - ToMV tomato mosaic virus - TMV tobacco mosaic virus - TMGMV tobacco mild green mosaic virus - ORSV odontoglossum ringspot virus - SHMV sunn hemp mosaic virus - CGMMV cucumber green mottle mosaic virus - ORMV oilseed rape mosaic virus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号