首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal structure of unliganded phosphofructokinase from Escherichia coli   总被引:2,自引:0,他引:2  
In an attempt to characterize the mechanism of co-operativity in the allosteric enzyme phosphofructokinase from Escherichia coli, crystals were grown in the absence of activating ligands. The crystal structure was determined to a resolution of 2.4 A by the method of molecular replacement, using the known structure of the liganded active state as a starting model, and has been refined to a crystallographic R-factor of 0.168 for all data. Although the crystallization solution would be expected to contain the enzyme in its inactive conformation, with a low affinity for the co-operative substrate fructose 6-phosphate, the structure in these crystals does not show the change in quaternary structure seen in the inactive form of the Bacillus stearothermophilus enzyme (previously determined at low resolution), nor does it show any substantial change in the fructose 6-phosphate site from the structure seen in the liganded form. Compared to the liganded form, there are considerable changes around the allosteric effector site, including the disordering of the last 19 residues of the chain. It seems likely that the observed conformation corresponds an active unliganded form, in which the absence of ligand in the effector site induces structural changes that spread through much of the subunit, but cause only minor changes in the active site. It is not clear why the crystals should contain the enzyme in a high-affinity conformation, which presumably represents only a small fraction of the molecules in the crystallizing solution. However, this structure does identify the conformational changes involved in binding of the allosteric effectors.  相似文献   

2.
The determination of the structure of PSII at high resolution is required in order to fully understand its reaction mechanisms. Two-dimensional crystals of purified highly active Synechococcus elongatus PSII dimers were obtained by in vitro reconstitution. Images of these crystals were recorded by electron cryo-microscopy, and their analysis revealed they belong to the two-sided plane group p22(1)2(1), with unit cell parameters a = 121 A, b = 333 A, and alpha = 90 degrees. From these crystals, a projection map was calculated to a resolution of approximately 16 A. The reliability of this projection map is confirmed by its close agreement with the recently presented three-dimensional model of the same complex obtained by X-ray crystallography. Comparison of the projection map of the Synechococcus elongatus PSII complex with data obtained by electron crystallography of the spinach PSII core dimer reveals a similar organization of the main transmembrane subunits. However, some differences in density distribution between the cyanobacterial and higher plant PSII complexes exist, especially in the outer region of the complex between CP43 and cytochrome b(559) and adjacent to the B-helix of the D1 protein. These differences are discussed in terms of the number and organization of some of the PSII low molecular weight subunits.  相似文献   

3.
A neutral protease, i.e., a zinc-containing metalloendoprotease from Streptomyces caespitosus, has been crystallized using acetone as a precipitating agent. The crystals diffract to better than 1.5 A resolution when a rotating anode X-ray generator is used as an X-ray source. Protein phase angles were calculated by the multiple isomorphous replacement method using two heavy-atom derivatives (HgCl2 and CH3HgCl). A 6 A resolution electron density map clearly showed molecular boundaries. Although its amino acid sequence is not known, the folding pattern of the polypeptide chain could be traced on a 2.5 A resolution electron density map. A large cleft, which is located on the molecular surface, was proved to be the active site of the enzyme by structure analyses of inhibitor-complex crystals. The highest electron density peak, which corresponds to the cleft, was assigned to a catalytically essential zinc atom on difference Fourier synthesis between native and EDTA-soaked crystals.  相似文献   

4.
Shen JR  Kamiya N 《Biochemistry》2000,39(48):14739-14744
A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.  相似文献   

5.
A close correspondence has been demonstrated between double filaments of deoxygenated hemoglobin S molecules as found in monoclinic crystals, forms I and II, and in sickle fibers. We have carried out a low resolution study of monoclinic form II by X-ray diffraction analysis. Its structure differs from that of form I solely by a shift along the a-axis of the molecular centers of the asymmetric unit, which forms the double filament. The magnitude of the translation was determined from a minimum residual calculation. The x co-ordinates of the symmetry related molecular centers of antipolar double filaments are approximately the same. This means that the double filaments are nearly in register. A minor component associated with form II crystals proved to be form I. The possible existence of additional forms is discussed.The significance of the molecular arrangement in form II is related to its presence in sickle fibers. We have determined the contacts between antipolar double filaments in this form as well as a number in form I not tabulated previously. These new contacts represent additional stabilizing interactions that might provide targets for the design of stereospecific antisickling agents.  相似文献   

6.
由P.versicolor龙虾尾肌提取的HOIO-D-甘油醛-3-磷酸脱氢酶(GAPDH),已长出可供Χ射线衍射用的晶体。初步Χ射线晶体学研究确定:此酶晶体属於C2空间群,不对称单位内含有半个分子,分子坐落在二重轴上。以Homarus Amercanus龙虾GAPDH结构为模型结构,应用分子置换技术进行了低分辨率Χ射线结构分析,结果表明:分子内亚基排列具有222对称性,分子Q轴平行于晶体学二重轴b,分子P和R轴分别平行于晶体学a和c轴。按分子置换法推出的结构模型算得5A分辨率的晶体学R因子为0.46。并获得了一套5A。分辨率的电子密度图。此酶的几种同晶型晶体,特别是荧光NAD衍生物晶体的较高分辨率的结构分析工作正在进行中。  相似文献   

7.
Oxalyl-coenzyme A decarboxylase is a thiamin diphosphate dependent enzyme active in the catabolism of the highly toxic compound oxalate. The enzyme from Oxalobacter formigenes has been expressed as a recombinant protein in Escherichia coli, purified to homogeneity and crystallized. Two crystal forms were obtained, one showing poor diffraction and the other merohedral twinning. Crystals in the former category belong to the tetragonal space group P4(2)2(1)2. Data to 4.1 A resolution were collected from these crystals and an incomplete low resolution structure was initially determined by molecular replacement. Crystals in the latter category were obtained by co-crystallizing the protein with coenzyme A, thiamin diphosphate and Mg(2+)-ions. Data to 1.73 A were collected from one of these crystals with apparent point group 622. The crystal was found to be heavily twinned, and a twin ratio of 0.43 was estimated consistently by different established methods. The true space group P3(1)21 was deduced, and a molecular replacement solution was obtained using the low resolution structure as template when searching in detwinned data.  相似文献   

8.
Lactoferrin was purified from fresh samples of goat colostrums, saturated with Fe3+ and CO3(2-) ions and crystallized by microdialysis method. The crystals belong to orthorhombic space group P2(1)2(1)2(1) with a=104.6 A, b=153.8 A, c=155.1 A and Z=4. The quality of crystals was poor, thus the intensity data were restricted to 4.0 A resolution only. The structure was determined by molecular replacement method using diferric buffalo lactoferrin as a model. The solution clearly indicated the presence of one molecule in the asymmetric unit, which corresponds to a Vm value of 7.1 A3/Da. The structure was refined with stringent constraints to an R-factor of 0.246 using all the reflections 15,870 to 4.0 A resolution. The overall structure of goat lactoferrin is essentially similar to those of buffalo and bovine lactoferrins. However, the iron-binding environment in goat lactoferrin is somewhat different, in which 2 CO3(2-). ions have low occupancies. The solvent content of approximately 84% was very high in the present case which explains the fragility of the crystals of goat lactoferrin. In a way, it is very surprising that the crystals grow at all, although crystals with solvent as high as 89% have been reported.  相似文献   

9.
Yeast peroxisomal catalase A, obtained at high yields by over expression of the C-terminally modified gene from a 2 mu-plasmid, has been crystallized in a form suitable for high resolution X-ray diffraction studies. Brownish crystals with bipyrimidal morphology and reaching ca. 0.8 mm in size were produced by the hanging drop method using ammonium sulphate as precipitant. These crystals diffract better than 2.0 A resolution and belong to the hexagonal space group P6(1)22 with unit cell parameters a = b = 184.3 A and c = 305.5 A. An X-ray data set with 76% completeness at 3.2 A resolution was collected in a rotating anode generator using mirrors to improve the collimation of the beam. An initial solution was obtained by molecular replacement only when using a beef liver catalase tetramer model in which fragments with no sequence homology had been omitted, about 150 residues per subunit. In the structure found a single molecule of catalase A (a tetramer with accurate 222 molecular symmetry) is located in the asymmetric unit of the crystal with an estimated solvent content of about 61%. The preliminary analysis of the structure confirms the absence of a carboxy terminal domain as the one found in the catalase from Penicillium vitalae, the only other fungal catalase structure available. The NADPH binding site appears to be involved in crystal contacts, suggesting that heterogeneity in the occupancy of the nucleotide can be a major difficulty during crystallization.  相似文献   

10.
Obtaining crystals of membrane proteins that diffract to high resolution remains a major stumbling block in structure determination. Here we present a new method for crystallizing membrane proteins from a bicelle forming lipid/detergent mixture. The method is flexible and simple to use. As a test case, bacteriorhodopsin (bR) from Halobacterium salinarum was crystallized from a bicellar solution, yielding a new bR crystal form. The crystals belong to space group P2(1) with unit cell dimensions of a=45.0 A, b=108.9 A, c=55.9 A, beta=113.58 degrees and a dimeric asymmetric unit. The structure was solved by molecular replacement and refined at 2.0 A resolution. In all previous bR structures the protein is organized as a parallel trimer, but in the crystals grown from bicelles, the individual bR subunits are arranged in an antiparallel fashion.  相似文献   

11.
Basic structural elements of the two photosystems and their component electron donors, acceptors, and carriers were revealed by newly developed spectroscopic methods in the 1960s and subsequent years. The spatial organization of these constituents within the functional membrane was elucidated by electrochromic band shift analysis, whereby the membrane-spanning chlorophyll-quinone couple of Photosystem (PS) II emerged as reaction center and as a model relevant also to other photosystems. A further step ahead for improved structural information was realized with the use of thermophilic cyanobacteria instead of plants which led to isolation of supramolecular complexes of the photosystems and their identification as PS I trimers and PS II dimers. The preparation of crystals of the PS I trimer, started in the late 1980s. Genes encoding the 11 subunits of PS I from Synechococcus elongatus were isolated and the predicted sequences of amino acid residues formed a basis for the interpretation of X-ray structure analysis of the PS I crystals. The crystallization of PS I was optimized by introduction of the 'reverse of salting in' crystallization with water as precipitating agent. On this basis the PS I structure was successively established from 6 A resolution in the early 1990s up to a model at 2.5 A resolution in 2001. The first crystals of the PS II dimer, capable of water oxidation, were prepared in the late 1990s; a PS II model at 3.8-3.6 A resolution was presented in 2001. Implications of the PS II structure for the mechanism of transmembrane charge separation are discussed. With the availability of PS I and PS II crystals, new directional structural results became possible also by application of different magnetic resonance techniques through measurements on single crystals in different orientations.  相似文献   

12.
The structure of the high-temperature orthorhombic form of hen egg-white lysozyme has been determined at 2.0 A resolution. Initial images of the molecule were obtained at 6.0 A resolution both by double isomorphous replacement and by molecular replacement with use of the known structure of the room-temperature tetragonal lysozyme. The initial model thus obtained (R = 0.52 at 6.0 A) was refined first as a rigid body at 6.0 A and then by restrained least squares at 2.5 A and later at 2.0 A resolution. The final model (R = 0.23 at 2.0 A) was compared with that of the tetragonal form: the structures are very similar with a root mean square difference in superimposed alpha-carbon coordinates of 0.46 A. There are, however, differences which are caused by a crystal contact involving the upper part of this active site in the high-temperature orthorhombic form. Because of this, residues Trp 62 and Pro 70 are much better ordered than in the tetragonal form, where they are exposed to solvent. These differences can partly explain the difficulty of inhibitor-binding in high-temperature orthorhombic crystals, but do not seem to reflect the particular behaviour of lysozyme in solution at high temperature.  相似文献   

13.
Fumarate reductases and succinate dehydrogenases play central roles in the metabolism of eukaryotic and prokaryotic cells. A recent medium resolution structure of the Escherichia coli fumarate reductase (Frd) has revealed the overall organization of the membrane-bound complex. Here we present the first high resolution X-ray crystal structure of a water-soluble bacterial fumarate reductase in an open conformation. This structure reveals a mobile domain that modulates substrate access to the active site and provides new insights into the mechanism of this widespread and important family of FAD-containing respiratory proteins.  相似文献   

14.
Copper-containing amine oxidase extracted from bovine serum (BSAO) was crystallized and its three-dimensional structure at 2.37A resolution is described. The biological unit of BSAO is a homodimer, formed by two monomers related to each other by a non-crystallographic 2-fold axis. Each monomer is composed of three domains, similar to those of other amine oxidases from lower species. The two monomers are structurally equivalent, despite some minor differences at the two active sites. A large funnel allows access of substrates to the active-site; another cavity, accessible to the solvent, is also present between the two monomers; this second cavity could allow the entrance of molecular oxygen necessary for the oxidative reaction. Some sugar residues, bound to Asn, were still present and visible in the electron density map, in spite of the exhaustive deglycosylation necessary to grow the crystals. The comparison of the BSAO structure with those of other resolved AO structures shows strong dissimilarities in the architecture and charge distribution of the cavities leading to the active-site, possibly explaining the differences in substrate specificity.  相似文献   

15.
Deoxy-sicklecell hemoglobin (HbS) polymerizes in 0.05 M phosphate buffer to form long helical fibers. The reaction typically occurs when the concentration of HbS is about 165 mg/ml. Polymerization produces a variety of polymorphic forms. The structure of the fibers can be probed by using site-directed mutants to examine the effect of altering the residues involved in intermolecular interactions. Polymerization can also be induced in the presence of 1.5 M phosphate buffer. Under these conditions polymerization occurs at much lower concentrations (ca. 5 mg/ml), which is advantageous when site-directed mutants are being used because only small quantities of the mutants are available. We have characterized the structure of HbS polymers formed in 1.5 M phosphate to determine how their structures are related to the polymers formed under more physiological conditions. Under both sets of conditions fibers are the first species to form. At pHs between 6.7 and 7.3 fibers initially form bundles and then crystals. At lower pHs fibers form macrofibers and then crystals. Fourier transforms of micrographs of the polymers formed in 1.5 M phosphate display the 32- and 64-A(-1) periodicity characteristic of fibers formed in 0.05 M phosphate buffer. The 64-A(-1) layer line is less prominent in Fourier transforms of negatively stained fibers formed in 1.5 M phosphate possibly because salt interferes with staining of the fibers. However, micrographs and Fourier transforms of frozen hydrated fibers formed in high and low phosphate display the same periodicities. Under both sets of reaction conditions HbS polymers form crystals with the same unit cell parameters as Wishner-Love crystals (a = 64 A, b = 185 A, c = 53 A). Some of the polymerization intermediates were examined in the frozen-hydrated state in order to determine whether their structures were significantly perturbed by negative staining. We have also carried out reconstructions of the frozen-hydrated fibers in high and low phosphate to compare their molecular coordinates. The helical projection of the reconstructions in low phosphate shows the expected 14-strand structure. In high phosphate the 14-strand fibers are also formed and their molecular coordinates are the same (within experimental error) as those of fibers formed in 0.05 M phosphate. In addition, the reconstructions of high-phosphate fibers reveal a new minor variant of fiber containing 10 strands. The polymerization products in 1.5 M phosphate buffer were generally indistinguishable from those formed in 0.05 M phosphate buffer. Micrographs of frozen hydrated specimens have facilitated the interpretation of previously published micrographs using negative staining.  相似文献   

16.
A photosystem II preparation from the thermophilic cyanobacterium Synechococcus elongatus, which is especially suitable for three-dimensional crystallization in a fully active form was developed. The efficient purification method applied here yielded 10 mg of protein of a homogenous dimeric complex of about 500 kDa within 2 days. Detailed characterization of the preparation demonstrated a fully active electron transport chain from the manganese cluster to plastoquinone in the Q(B) binding site. The oxygen-evolving activity, 5000-6000 micromol of O(2)/(h.mg of chlorophyll), was the highest so far reported and is maintained even at temperatures as high as 50 degrees C. The crystals obtained by the vapor diffusion method diffracted to a resolution of 4.3 A. The space group was determined to be P2(1)2(1)2(1) with four photosystem II dimers per unit cell. Analysis of the redissolved crystals revealed that activity, supramolecular organization, and subunit composition were maintained during crystallization.  相似文献   

17.
S100A4 (metastasin) is a member of the S100 family of calcium-binding proteins that is directly involved in tumorigenesis. Until recently, the only structural information available was the solution NMR structure of the inactive calcium-free form of the protein. Here we report the crystal structure of human S100A4 in the active calcium-bound state at 2.03 Å resolution that was solved by molecular replacement in the space group P65 with two molecules in the asymmetric unit from perfectly merohedrally twinned crystals. The Ca2 +-bound S100A4 structure reveals a large conformational change in the three-dimensional structure of the dimeric S100A4 protein upon calcium binding. This calcium-dependent conformational change opens up a hydrophobic binding pocket that is capable of binding to target proteins such as annexin A2, the tumor-suppressor protein p53 and myosin IIA. The structure of the active form of S100A4 provides insight into its interactions with its binding partners and a better understanding of its role in metastasis.  相似文献   

18.
We have grown crystals in trigonal space group P3(2)21 of a mutant human myoglobin, aquomet form, in which lysine at position 45 has been replaced by arginine and cysteine at position 110 has been replaced by alanine. Suitable crystals of native recombinant human myoglobin have not been obtained. We have used the molecular replacement method to determine the X-ray crystal structure of the mutant at 2.8 A resolution. At the present stage of refinement, the crystallographic R-value for the model, with tightly restrained stereochemistry, is 0.158 for 5.0 to 2.8 A data. As expected, the overall structure is quite similar to the sperm whale myoglobin structure. Arginine 45 adopts a well-ordered conformation similar to that found in aquomet sperm whale myoglobin.  相似文献   

19.
A novel, type 1 ribosome-inactivating protein designated charybdin was isolated from bulbs of Charybdis maritima agg. The protein, consisting of a single polypeptide chain with a molecular mass of 29 kDa, inhibited translation in rabbit reticulocytes with an IC50 of 27.2 nm. Plant genomic DNA extracted from the bulb was amplified by PCR between primers based on the N-terminal and C-terminal sequence of the protein from dissolved crystals. The complete mature protein sequence was derived by partial DNA sequencing and terminal protein sequencing, and was confirmed by high-resolution crystal structure analysis. The protein contains Val at position 79 instead of the conserved Tyr residue of the ribosome-inactivating proteins known to date. To our knowledge, this is the first observation of a natural substitution of a catalytic residue at the active site of a natural ribosome-inactivating protein. This substitution in the active site may be responsible for the relatively low in vitro translation inhibitory effect compared with other ribosome-inactivating proteins. Single crystals were grown in the cold room from PEG6000 solutions. Diffraction data collected to 1.6 A resolution were used to determine the protein structure by the molecular replacement method. The fold of the protein comprises two structural domains: an alpha + beta N-terminal domain (residues 4-190) and a mainly alpha-helical C-terminal domain (residues 191-257). The active site is located in the interface between the two domains and comprises residues Val79, Tyr117, Glu167 and Arg170.  相似文献   

20.
The three-dimensional structure of the heterodimeric alpha 2 beta 2 enzyme phenylalanyl-tRNA synthetase from Thermus thermophilus HB8 has been determined by X-ray crystallography, using the multiple-isomorphous-replacement method at 0.6 nm resolution. Trigonal crystals of space group P3(2)21 have cell dimensions a = b = 17.6 nm and c = 14.2 nm. Assuming one heterodimeric molecule/asymmetric unit, the ratio of unit cell volume/molecular mass was V = 0.00244 nm3/Da, which is in the middle of the range normally observed. However, after a rotation-function calculation and measurement of the density of the native crystals, we postulate the existence of only the alpha beta dimer in the asymmetric units. This implies 73% solvent content in the unit cell. Three heavy-atom derivatives [K2PtCl4, KAu(CN)2 and Hg(CH3COO)2] and the solvent-flattening procedure were used for electron-density-map calculations. This map confirmed our hypothesis and revealed a remarkably large space filled by solvent, with alpha beta dimer only in the asymmetric unit. The phenylalanyl-tRNA synthetase from T. thermophilus molecule has a 'quasi-linear' subunit organization. As can be concluded at this level of resolution, there is no contact between small alpha subunits in the functional heterodimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号