首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma delta, a prokaryotic transposon, encodes a transposase that is essential for its transposition. We show here, by DNase I protection experiments, that purified gamma delta transposase binds at the transposon's inverted repeats (IRs). Immediately adjacent to each transposase binding site (and within gamma delta DNA) we have identified a binding site for an additional protein factor, the Escherichia coli-encoded integration host factor (IHF). The binding of transposase and IHF to these adjacent sites is mutually cooperative. An IHF binding-site was also found in the original target DNA, just outside one of the ends of gamma delta. The affinity of IHF for this flanking site is reduced by transposase. These results demonstrate that gamma delta transposase binds at the IRs of gamma delta, and suggest that IHF may be involved in forming a transposase-DNA complex and/or influencing the target site selection during the transposition of gamma delta.  相似文献   

2.
The transposon gamma delta, in common with other members of the Tn3 family, confers transpositional immunity, a phenomenon by which plasmids containing a single transposon end show reduced activity as targets for further insertion by the same element. We found that a copy of a mutant delta end, in which the two terminal base pairs (5' GG) were substituted with cytosines, conferred the same degree of immunity as the unaltered delta end. However, a transposon analog with the mutant delta end as its termini could not transpose. These results suggest that the binding of transposase to a site on a target replicon is sufficient to confer immunity and that immunity does not involve subsequent DNA transactions at the bound target site, analogous to the catalytic processes that occur at the transposon ends during transposition.  相似文献   

3.
The Caenorhabditis elegans transposons Tc1 and Tc3 are able to transpose in heterologous systems such as human cell lines and zebrafish. Because these transposons might be useful vectors for transgenesis and mutagenesis of diverse species, we determined the minimal cis requirements for transposition. Deletion mapping of the transposon ends shows that fewer than 100?bp are sufficient for transposition of Tc3. Unlike Tc1, Tc3 has a second, internal transposase binding site at each transposon end. We found that these binding sites play no major role in the transposition reaction, since they can be deleted without reduction of the transposition frequency. Site-directed mutagenesis was performed on the conserved terminal base pairs at the Tc3 ends. The four terminal base pairs at the ends of the Tc3 inverted repeats were shown to be required for efficient transposition. Finally, increasing the length of the transposon from 1.9?kb to 12.5 kb reduced the transposition frequency by 20-fold, both in vivo and in vitro.  相似文献   

4.
The Caenorhabditis elegans transposons Tc1 and Tc3 are able to transpose in heterologous systems such as human cell lines and zebrafish. Because these transposons might be useful vectors for transgenesis and mutagenesis of diverse species, we determined the minimal cis requirements for transposition. Deletion mapping of the transposon ends shows that fewer than 100 bp are sufficient for transposition of Tc3. Unlike Tc1, Tc3 has a second, internal transposase binding site at each transposon end. We found that these binding sites play no major role in the transposition reaction, since they can be deleted without reduction of the transposition frequency. Site-directed mutagenesis was performed on the conserved terminal base pairs at the Tc3 ends. The four terminal base pairs at the ends of the Tc3 inverted repeats were shown to be required for efficient transposition. Finally, increasing the length of the transposon from 1.9 kb to 12.5 kb reduced the transposition frequency by 20-fold, both in vivo and in vitro. Received: 21 April 1999 / Accepted: 10 June 1999  相似文献   

5.
Two domains in the terminal inverted-repeat sequence of transposon Tn3   总被引:4,自引:0,他引:4  
H Ichikawa  K Ikeda  J Amemura  E Ohtsubo 《Gene》1990,86(1):11-17
Tn3 and related transposons have terminal inverted repeats (IR) of about 38 bp that are needed as sites for transposition. We made mini-Tn3 derivatives which had a wild-type IR of Tn3 at one end and either the divergent IR of the Tn3-related transposon, gamma delta or IS101, or a mutant IR of Tn3 at the other end. We then examined both in vivo transposition (cointegration between transposition donor and target molecules) of these mini-Tn3 elements and in vitro binding of Tn3-encoded transposase to their IRs. None of the elements with an IR of gamma delta or IS101 mediated cointegration efficiently. This was due to inefficient binding of transposase to these IR. Most mutant IR also interfered with cointegration, even though transposase bound to some mutant IR as efficiently as it did to wild type. This permitted the Tn3 IR sequence to be divided into two domains, named A and B, with respect to transposase binding. Domain B, at positions 13-38, was involved in transposase binding, whereas domain A, at positions 1-10, was not. The A domain may contain the sequence recognized by some other (e.g., host) factor(s) to precede the actual cointegration event.  相似文献   

6.
A plasmid containing the transposon gamma delta sequence was immune to further insertion of gamma delta (transposition immunity). Plasmids carrying a fragment containing either 0.2 kilobase pairs of the gamma end or 0.4 kilobase pairs of the delta end of the gamma delta sequence were immune, and other parts of the gamma delta sequence did not confer immunity. The terminal 38-base-pair (bp) sequence of the delta end of the gamma delta was sufficient to confer immunity, the 38-bp sequence of the gamma end conferred only moderate immunity, and the terminal 35-bp sequence, which was completely identical at both the gamma and delta ends, was insufficient to confer immunity.  相似文献   

7.
The Tn10 transpososome is a DNA processing machine in which two transposon ends, a transposase dimer and the host protein integration host factor (IHF), are united in an asymmetrical complex. The transitions that occur during one transposition cycle are not limited to chemical cleavage events at the transposon ends, but also involve a reorganization of the protein and DNA components. Here, we demonstrate multiple pathways for Tn10 transposition. We show that one series of events is favored over all others and involves cyclic changes in the affinity of IHF for its binding site. During transpososome assembly, IHF is bound with high affinity. However, the affinity for IHF drops dramatically after cleavage of the first transposon end, leading to IHF ejection and unfolding of the complex. The ejection of IHF promotes cleavage of the second end, which is followed by restoration of the high affinity state which in turn regulates target interactions.  相似文献   

8.
9.
Tn10 transposition, like all transposition reactions examined thus far, involves assembly of a stable protein-DNA transpososome, containing a pair of transposon ends, within which all chemical events occur. We report here that stable Tn10 pre-cleavage transpososomes occur in two conformations: a folded form which contains the DNA-bending factor IHF and an unfolded form which lacks IHF. Functional analysis shows that both forms undergo double strand cleavage at the transposon ends but that only the unfolded form is competent for target capture (and thus for strand transfer to target DNA). Additional studies reveal that formation of any type of stable transpososome, folded or unfolded, requires not only IHF but also non-specific transposase-DNA contacts immediately internal to the IHF-binding site, implying the occurrence of a topo- logically closed loop at the transposon end. Overall, transpososome assembly must proceed via a folded intermediate which, however, must be unfolded in order for intermolecular transposition to occur. These and other results support key features of a recently proposed model for transpososome assembly and morphogenesis.  相似文献   

10.
We report here that the ends of IS1 are bound and protected in vitro by the heterodimeric protein integration host factor (IHF). Under identical conditions, RNA polymerase binds to one of these ends (IRL) and protects a region that includes the sequences protected by IHF. Other potential sites within IS1, identified by their homology to the apparent consensus sequence, are not protected. Footprinting analysis of deletion derivatives of the ends demonstrates a correspondence between the ability of the end sequence to bind IHF and its ability to function as an end in transposition. Nonetheless, some transposition occurs in IHF- cells, indicating that IHF is not an essential component of the transposition apparatus. IHF also binds and protects four closely spaced regions within the major hot-spot for insertion of IS1 in the plasmid pBR322. This striking correlation of hot-spot and IHF-binding sites suggests a possible role for IHF in IS1 insertion specificity.  相似文献   

11.
The Tn10 transpososome has symmetrical components on either side: there are two transposon ends each of which has binding sites for a monomer of transposase and an IHF heterodimer. The DNA bending activity of IHF stimulates assembly of an intermediate with tightly folded transposon ends in which transposase has additional ‘subterminal’ DNA contacts, located distal to the IHF site. These subterminal contacts are required to activate later steps in the reaction. Quantitative hydroxyl radical footprinting and gel retardation unfolding experiments show that the transpososome is fundamentally asymmetric, despite having identical components on either side. Major differences between the transposon ends define α and β sides of the complex. IHF can dissociate from the transposon arm on the β side of the complex in the absence of metal ion. However, IHF is locked onto the α side of the complex, probably by the subterminal transposase contacts, until released by a metal ion-dependent conformational change. Later in the reaction, IHF inhibits target interactions. Using a very short transposon arm, target interactions are demonstrated at a saturating IHF concentration. This suggests that inhibition of target interactions is due to steric hindrance of the target binding site by a single IHF-folded transposon arm.  相似文献   

12.
gamma delta, a member of the Tn3 family of prokaryotic transposons, encodes a transposase that binds to the 35-base pair (bp) terminal inverted repeats (IRs) which define the transposing DNA segment. The gamma delta transposase has been overexpressed, identified by molecular weight determination and by immunoblotting, and purified to homogeneity. Production of soluble transposase required the presence of Mg2+ prior to cell lysis. Fractions from a Sephacryl S-300 column contained levels of IR-binding activity that parallel the concentration of transposase, indicating that transposase alone is sufficient for binding to the ends of gamma delta. Hydroxyl radical footprinting indicated that transposase binds to one face of the DNA helix. The protected region extends across the IR and up to 17 bp into the flanking DNA. Integration host factor (IHF), which binds adjacent to transposase, also protects one face of the DNA helix and is shifted about 70 degrees around the helical axis from the transposase protection. Analysis of transposase-DNA complexes by electrophoresis on nondenaturing gels indicated that three complexes, two within the gel and one trapped at the well, result from specific interactions with the IR. The complex in the well and one complex in the gel were analyzed by methylation interference experiments. The results indicate that transposase interacts with specific base pairs between positions 10 and 37 of the IR, a region encompassing three consecutive major and minor grooves. Methylated bases at the very end of the transposon (positions 1-9) and in the flanking DNA did not inhibit transposase binding. Thus, although transposase seems to be in intimate contact throughout the IR of gamma delta and 17 bp of flanking DNA, specific base pair recognition needed for binding appears to be determined by the inner three-quarters of the IR.  相似文献   

13.
Transpositional activity of mobile elements is not constant. Conditional regulation of host factors involved in transposition may severely change the activity of mobile elements. We have demonstrated previously that transposition of Tn4652 in Pseudomonas putida is a stationary phase-specific event, which requires functional sigma S (Ilves et al., 2001, J Bacteriol 183: 5445-5448). We hypothesized that integration host factor (IHF), the concentration of which is increased in starving P. putida, might contribute to the transposition of Tn4652 as well. Here, we demonstrate that transposition of Tn4652 in stationary phase P. putida is essentially limited by the amount of IHF. No transposition of Tn4652 occurs in a P. putida ihfA-defective strain. Moreover, overexpression of IHF results in significant enhancement of transposition compared with the wild-type strain. This indicates that the amount of IHF is a bottleneck in Tn4652 transposition. Gel mobility shift and DNase I footprinting studies revealed that IHF is necessary for the binding of transposase to both transposon ends. In vitro, transposase can bind to inverted repeats of transposon only after the binding of IHF. The results obtained in this study indicate that, besides sigma S, IHF is another host factor that is implicated in the elevation of transposition in stationary phase.  相似文献   

14.
The organization of the outside end of transposon Tn5.   总被引:3,自引:0,他引:3       下载免费PDF全文
The end sequences of the IS50 insertion sequence are known as the outside end (OE) and inside end. These complex ends are related but nonidentical 19-bp sequences that serve as substrates for the activity of the Tn5 transposase. Besides providing the binding site of the transposase, the end sequences of a transposon contain additional types of information necessary for transposition. These additional properties include but are not limited to host protein interaction sites and sites that program synapsis and cleavage events. In order to delineate the properties of the IS50 ends,the base pairs involved in the transposase binding site have been defined. This has been approached through performing a variety of in vitro analyses: a ++hydroxyl radical missing-nucleoside interference experiment, a dimethyl sulfate interference experiment, and an examination of the relative binding affinities of single-site end substitutions. These approaches have led to the conclusion that the transposase binds to two nonsymmetrical regions of the OE, including positions 6 to 9 and 13 to 19. Proper binding occurs along one face of the helix, over two major and minor grooves, and appears to result in a significant bending of the DNA centered approximately 3 bp from the donor DNA-OE junction.  相似文献   

15.
Kim YJ  Hice RH  O'Brochta DA  Atkinson PW 《Genetica》2011,139(8):985-997
We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites.  相似文献   

16.
J Amemura  H Ichikawa  E Ohtsubo 《Gene》1990,88(1):21-24
A series of mutant terminal inverted repeats (IRs), having 2 bp substitutions at various sites within the 38-bp IR sequence of the ampicillin-resistance transposon Tn3, were tested for transposition immunity to Tn3. Mutations within region 1-10 in the IR did not affect transposition immunity, while mutations within region 13-38 inactivated the immunity function. These two regions corresponded to domain A which was not bound specifically by Tn3 transposase and to domain B which was bound by the transposase, respectively. This indicates that specific binding of transposase to domain B within the IR sequence is responsible for transposition immunity.  相似文献   

17.
Transposition reactions take place in the context of higher-order protein-DNA complexes called transpososomes. In the Tn10 transpososome, IHF binding to an "outside end" creates a bend in the DNA that allows the transposase protein to contact the end at two different sites, the terminal and subterminal binding sites. Presumably this helps to stabilize the transposase-end interaction. However, the DNA loop that is formed must be unfolded at a later stage in order for the transposon to integrate into other DNA molecules. It has been proposed that transpososome unfolding also plays a role in transposon excision. To investigate this possibility further, we have isolated and characterized transposase mutants with altered transpososome unfolding properties. Two such mutants were identified, R182A and R184A. Both mutants fail to carry out hairpin formation, an intermediate step in transposon excision, specifically with outside end-containing substrates. These results support the idea that transpososome unfolding and excision are linked. Also, based on the importance of residues R182 and R184 in transpososome unfolding, we propose a new model for the Tn10 transpososome, wherein both DNA ends of the transpososome make subterminal contacts with transposase.  相似文献   

18.
The IS 1-encoded protein InsA binds specifically to both ends of IS1, and acts as a repressor of IS1 gene expression and may be a direct inhibitor of the transposition process. We show here, using DNasel 'foot-printing' and gel retardation, that the InsA binding sites are located within the 24/25 bp minimal active ends of IS1 and that InsA induces DNA bending upon binding. Conformational modification of the ends of IS1 as a result of binding of the host protein integration host factor (IHF) to its site within the minimal ends has been previously observed. Using a collection of synthetic mutant ends we have mapped some of the nucleotide sequence requirements for InsA binding and for transposition activity. We show that sequences necessary for InsA binding are also essential for transposition activity. We demonstrate that InsA and IHF binding sites overlap since some sequence determinants are shared by both InsA and IHF. The data suggest that these ends contain two functional domains: one for binding of InsA and IHF, and the other for transposition activity. A third region, when present, may enhance transposition activity with an intact right end. This 'architecture' of the ends of IS1 is remarkably similar to that of IS elements IS10, IS50 and IS903.  相似文献   

19.
Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号