首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed an assay that quantitates bidirectional cholesterol flux between cells and lipoproteins. Incubating Fu5AH cells with increasing concentrations of human serum resulted in increased influx and efflux; however, influx was 2- to 3-fold greater at all serum concentrations. With apolipoprotein B (apoB)-depleted serum, the ratio of influx to efflux (I/E) was close to 1, indicating cholesterol exchange. The apoB fraction of serum induced influx and little efflux, with I/E > 1. Using block lipid transport-1 to block scavenger receptor class B type I (SR-BI)-mediated flux with different acceptors, we determined that 50% to 70% of efflux was via SR-BI. With HDL, 90% of influx was via SR-BI, whereas with LDL or serum, 20% of influx was SR-BI-mediated. Cholesterol-enriched hepatoma cells produced increased efflux without a change in influx, resulting in reduced I/E. The assay was applied to cholesterol-normal and -enriched mouse peritoneal macrophages exposed to serum or LDL. The enrichment enhanced efflux without shifts in influx. With cholesterol-enriched macrophages, HDL efflux was enhanced and influx was greatly reduced. With all lipoproteins, cholesterol enrichment of murine peritoneal macrophages led to a reduced I/E. We conclude that this assay can simultaneously and accurately quantitate cholesterol bidirectional flux and can be applied to a variety of cells exposed to isolated lipoproteins or serum.  相似文献   

2.
Previous studies indicate that free cholesterol moves passively between high density lipoprotein (HDL) and cell plasma membranes by uncatalyzed diffusion of cholesterol molecules in the extracellular aqueous phase. By this mechanism, the rate constants for free cholesterol influx (Cli) and efflux (ke) should not be very sensitive to the free cholesterol content of cells or HDL. Thus, at a given HDL concentration, the unidirectional influx and efflux of cholesterol mass (Fi, Fe) should be proportional to the cholesterol content of HDL and cells, respectively, and net efflux of cholesterol mass (Fe-Fi greater than 0) should occur when either cells are enriched with cholesterol or HDL is depleted of cholesterol. We have examined the influence of cell and HDL free cholesterol contents on the bidirectional flux of free cholesterol between HDL and human fibroblasts and also attempted to detect some dependence of flux on the binding of HDL to the cells. In the range of HDL concentrations from 1 to 1000 micrograms of protein/ml, ke for cell free cholesterol approximately doubled for every 10-fold increase in HDL concentration, reaching 0.04 h-1 at 1000 micrograms of HDL/ml. ke and Cli were not influenced by the doubling of fibroblast free cholesterol content (from 31 +/- 5 to 62 +/- 13 micrograms of cholesterol/mg of protein). There was an approximate exchange of cholesterol between HDL and the unenriched fibroblasts (e.g. at [HDL] = 100 micrograms/ml, Fe and Fi = 3.2 and 3.0 micrograms of cholesterol/[4 h.mg of cell protein], respectively). In contrast, there was substantial net efflux from the enriched cells (at [HDL] = 100 micrograms/ml, Fe and Fi = 5.5 and 3.1 micrograms of cholesterol/[4 h.mg of cell protein], respectively). The rate constants for cholesterol flux were not influenced by changing the free cholesterol content of HDL, so that there was net efflux of cell cholesterol in the presence of cholesterol-depleted HDL and net influx from cholesterol-rich HDL. The Kd of HDL binding to fibroblasts was reduced from 1.7 to 0.9 micrograms/ml by the enrichment of the cells with free cholesterol; this increase in affinity for HDL was not reflected in enhanced rate constants for cholesterol flux. The inhibition of specific HDL binding by treatment of the lipoprotein with dimethyl suberimidate did not affect cholesterol flux using either control or cholesterol-rich cells at any HDL concentration in the range 1-1000 micrograms/ml. The above results are consistent with the concept that net movement of free cholesterol between cells and HDL occurs by passive, mass-action effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Sooty mangabey (Cercocebus atys) monkeys had a lower serum HDL cholesterol concentration than any other Old World monkey species reported. In addition, they had a higher serum Lp(a) concentration than other species. The mangabeys were fed a cholesterol-fat diet for 5 weeks. HDL2 and HDL3 amounts were determined from the two peaks apparent upon analytical ultracentrifugation. In the first 1-3 weeks, 13 of the 14 mangabeys increased 30% (mean) in total HDL, this increase occurring only in the HDL2 fraction. After 5 weeks, HDL and HDL2 decreased markedly. During the cholesterol feeding, HDL3 continually decreased in flotation rate, indicating it was either smaller and/or denser. HDL2 and HDL3 separated well on molecular sieving agarose columns during the diet period, whereas a single symmetrical elution peak was found for chow-fed HDL. Thus on a cholesterol-fat diet, HDL2 and HDL3 increased in difference in molecular size.  相似文献   

4.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27 degrees C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1, or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 X 55 A. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

5.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27°C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1 or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 × 55 A?. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

6.
The capacity of lipoprotein fractions to provide cholesterol necessary for human lymphocyte proliferation was examined. When endogenous synthesis of cholesterol was blocked, proliferation of mitogen-stimulated normal human lymphocytes was markedly inhibited unless an exogenous source of sterol was supplied. All lipoprotein fractions with the exception of high density lipoprotein subclass 3 were able to provide cholesterol for lymphocyte proliferation. Each of the lipoprotein subfractions capable of providing cholesterol was also able to regulate endogenous sterol synthesis in cultured human lymphocytes. Provision of cholesterol by lipoproteins required the interaction of apolipoprotein B or apolipoprotein E with specific receptors on normal lymphocytes. Apolipoprotein modification by acetylation or methylation, which markedly reduced the ability to regulate sterol biosynthesis, also diminished the capacity of lipoproteins to provide cholesterol. In addition, depletion of apolipoprotein B- and apolipoprotein E-containing particles from high density lipoprotein decreased its ability to suppress cholesterol synthesis and prevented it from providing cholesterol to proliferating lymphocytes. Monoclonal antibodies directed against the receptor-recognition sites on apolipoprotein B and apolipoprotein E were used to define the specific apolipoproteins required for the provision of cholesterol to lymphocytes by the various lipoprotein fractions. The antibody to apolipoprotein B inhibited cholesterol provision by both low density lipoprotein (LDL) and other lipoprotein fractions. The antibody to apolipoprotein E did not decrease provision of cholesterol by LDL but did inhibit the capacity of other fractions to provide cholesterol. In addition, a monoclonal antibody against the ligand binding site on the LDL receptor inhibited provision of cholesterol to normal lymphocytes by all lipoproteins. Finally, lymphocytes lacking LDL receptors were unable to obtain cholesterol from any lipoprotein fraction. These studies demonstrate that LDL receptor-mediated interaction with apolipoprotein B or apolipoprotein E is essential for the provision of cholesterol to normal human lymphocytes from all lipoprotein sources.  相似文献   

7.
To assess the effect of cimetidine and ranitidine on high density lipoprotein (HDL) cholesterol concentration two groups of eight patients with duodenal ulcer or oesophagitis matched for age, sex, and cigarette consumption were given either cimetidine 1 g daily or ranitidine 300 mg daily for one month. There was no significant change in the cholesterol content of HDL and its subfraction HDL3 after treatment with ranitidine or cimetidine, or in the cholesterol content of the subfraction HDL2 after treatment with ranitidine; the HDL2 cholesterol concentration was, however, significantly increased after treatment with cimetidine. Further studies are being undertaken to establish the mechanism of this effect.  相似文献   

8.
OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than 0.05). CONCLUSION--Over 12 years the lipid profile deteriorated significantly in this healthy cohort of young men. Smoking, a low high density lipoprotein concentration and a raised low density lipoprotein concentration were all associated with coronary heart disease in middle aged Scottish men, whereas there was no association for total cholesterol concentration. The findings have implications for screening programmes.  相似文献   

9.
Helical apolipoprotein(apo)s generate pre-beta-high density lipoprotein (HDL) by removing cellular cholesterol and phospholipid upon the interaction with cells. To investigate its physiological relevance, we studied the effect of an in vitro inhibitor of this reaction, probucol, in mice on the cell-apo interaction and plasma HDL levels. Plasma HDL severely dropped in a few days with probucol-containing chow while low density protein decreased more mildly over a few weeks. The peritoneal macrophages were assayed for apoA-I binding, apoA-I-mediated release of cellular cholesterol and phospholipid and the reduction by apoA-I of the ACAT-available intracellular cholesterol pool. All of these parameters were strongly suppressed in the probucol-fed mice. In contrast, the mRNA levels of the potential regulatory proteins of the HDL level such as apoA-I, apoE, LCAT, PLTP, SRB1 and ABC1 did not change with probucol. The fractional clearance rate of plasma HDL-cholesteryl ester was uninfluenced by probucol, but that of the HDL-apoprotein was slightly increased. No measurable CETP activity was detected either in the control or probucol-fed mice plasma. The change in these functional parameters is consistent with that observed in the Tangier disease patients. We thus concluded that generation of HDL by apo-cell interaction is a major source of plasma HDL in mice.  相似文献   

10.
The interactions of high density lipoprotein (HDL) and acetylated high density lipoprotein (acetyl-HDL) with isolated rat sinusoidal liver cells have been investigated. Cellular binding of 125I-acetyl-HDL at 0 degrees C demonstrated the presence of a specific, saturable membrane-associated receptor. This receptor was affected neither by formaldehyde-treated albumin nor by low density lipoprotein modified either by acetylation or malondialdehyde, ligands known to undergo receptor-mediated endocytosis by the cells, indicating that the receptor for acetyl-HDL constitutes a distinct class among the scavenger receptors for chemically modified proteins. Parallel binding experiments using 125I-HDL also revealed the presence on these cells of a receptor for unmodified HDL. The ligand specificities of these two receptors were similar to each other except that the acetyl-HDL receptor was sensitive to polyanions such as dextran sulfate and fucoidin. Interaction of HDL with the cells at 37 degrees C was totally different from that of acetyl-HDL. Cellular binding of HDL was not accompanied by subsequent intracellular degradation of its apoprotein moiety, whereas its cholesterol moiety was significantly transferred to the cells. In contrast, acetyl-HDL was endocytosed and underwent lysosomal degradation as a holoparticle. This shift in receptor-recognition from the HDL receptor to the acetyl-HDL receptor was accomplished by acetylation of approximately 8% of the total lysine residues of HDL apoprotein. This unique difference in endocytic behavior between HDL and acetyl-HDL suggests a potential link of the HDL receptor to HDL-mediated cholesterol transfer in sinusoidal liver cells.  相似文献   

11.
12.
13.
Apo-A-1, the principal apoprotein of high density lipoprotein, was incubated with cholesterol containing liposomes of dimyristoyl lecithin, lecithin from high density lipoprotein or sphingomyelin. Conditions were chosen to give 100% conversion of cholesterol-free liposomes into recombinants which were isolated by density gradient ultracentrifugation. For all phospholipids, there was a progressive decrease in incorporation of lipid into recombinants with increasing cholesterol/phospholipid ratio. The cholesterol/phospholipid ratio of recombinants was ~ 45% of unreacted liposomes, for all initial cholesterol/phospholipid ratios. The reduced cholesterol content suggests exclusion of cholesterol from a fraction of recombinant phospholipid, probably a boundary layer in contact with apo A-1.  相似文献   

14.
The cholesterol oxidase-catalyzed oxidation of cholesterol in native low density (LDL) and high density lipoproteins (HDL3) as well as in monolayers prepared from surface lipids of these particles, has been examined. The objective of the study was to compare the oxidizability of cholesterol, and to examine the effects of lipid packing on oxidation rates. When [3H]cholesterol-labeled lipoproteins were exposed to cholesterol oxidase (Streptomyces sp.), it was observed that LDL [3H]cholesterol was oxidized much faster than HDL3 [3H]cholesterol. This was true both at equal cholesterol concentration per enzyme unit, and at equal amounts of lipoprotein particles per enzyme unit. About 95% of lipoprotein [3H]cholesterol was available for oxidation. The complete degradation of lipoprotein sphingomyelin by sphingomyelinase (Staphylococcus aureus) resulted in a 10-fold increase in the rate of LDL [3H]cholesterol oxidation, whereas the effects on rates of HDL3 [3H]cholesterol oxidation were less dramatic. A monolayer study with LDL surface lipids indicated that degradation of sphingomyelin loosened the lipid packing, because the ceramide formed occupied a smaller surface area than the parent sphingomyelin, and since the condensing effect of cholesterol on sphingomyelin packing was lost. The effects of sphingomyelin degradation on lipid packing in monolayers of HDL3-derived surface lipids were difficult to determine from monolayer experiments. Based on the finding that cholesterol oxidases are surface pressure-sensitive with regard to their catalytic activity, these were used to estimate the surface pressure of intact LDL and HDL3. The cut-off surface pressure of a Brevibacterium enzyme was 25 mN/m and 20 mN/m in monolayers of LDL and HDL3-derived surface lipids, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
This study shows that phospholipid depletion has a major impact on the size and structure of spherical, reconstituted high density lipoproteins (rHDL) and their remodeling by cholesteryl ester transfer protein (CETP). Spherical rHDL, 9.2 nm in diameter with a phospholipid/cholesteryl ester/unesterified cholesterol/apolipoprotein A-I (apoA-I) (PL/CE/UC/A-I) molar ratio of 37.3/24.5/4.1/1.0, were depleted progressively of phospholipids by incubation with phospholipase A(2). After 30 min of incubation the PL/CE/UC/A-I molar ratio of the rHDL was 8.0/31.2/4.4/1.0 and their diameter had decreased to 8.0 nm. Comparable changes in rHDL size and composition were also apparent when the incubations were carried out in the presence of other lipoprotein classes and lipoprotein-deficient plasma. The changes in size and composition were not accompanied by the dissociation of apoA-I from the rHDL. Phospholipid depletion did not affect rHDL surface charge or the structure and stability of apoA-I. The remodeling of unmodified and phospholipid-depleted rHDL by CETP was also investigated. When the rHDL were incubated for 3 h with CETP and Intralipid, transfers of core lipids between the phospholipid-depleted rHDL and Intralipid were decreased relative to unmodified rHDL. This difference was no longer apparent when the incubations were extended beyond 3 h. In these incubations apoA-I dissociated from the phospholipid-depleted and unmodified rHDL at 3 and 12 h, respectively. At 24 h the respective diameters of the unmodified rHDL and phospholipid-depleted rHDL were 8.0 and 7.8 nm. In conclusion, phospholipid depletion has a major impact on rHDL size and their remodeling by CETP.  相似文献   

17.
Excess cholesterol was added to human HDL3 and to bovine mammalian high density serum lipoprotein (HDL) by incubating aqueous lipoprotein solutions with solid dispersions of [4-(14)C]cholesterol on Celite. Lipoprotein cholesterol complexes were isolated by centrifugation and filtration through a Sepharose 4B column. The pure complexes were analyzed for protein and lipid content and composition and were subsequently investigated by physical methods (analytical ultracentrifugation, circular dichroism, and fluorescence spectroscopy), in order to detect any structural changes induced by added cholesterol. The rates of cholesterol uptake varied as an inverse function of the intrinsic cholesterol present in the native lipoproteins. The maximum cholesterol taken up by human HDL3 increased the free cholesterol content from 3--4% (initial) up to 22% of the total lipoprotein weight. Bovine HDL was observed to increase its free cholesterol content from 2--4% (initial) up to 11--17% of the total lipoprotein weight, before denaturation. At maximum levels of added cholesterol, both lipoproteins had increased molecular weights and sedimentation velocity coefficients corresponding to the increased mass of the particles. No major changes in the hydrodynamic properties were observed. At the molecular level, the protein components only showed a 15--20% decrease in fluorescence intensity, possibly a consequence of a modified environment of the aromatic amino acid residues. In the human HDL3, added cholesterol increased the microviscosity of the lipid domains by 1.2 P at 25 degrees C (from 3.4 to 4.6 P), but did not affect the fluidity of bovine HDL lipids (5.9 P).  相似文献   

18.
The bidirectional flux of unesterified cholesterol between cells and high density lipoprotein (HDL) was studied in relationship to the binding of HDL to cells. At 100 micrograms at HDL protein/ml, the rate constant for cholesterol efflux from rat Fu5AH hepatoma cells is 3 X 10(-3)/min (t1/2 for efflux of 3.9 h), whereas efflux from GM3468 human fibroblasts is 0.075/4 h (equivalent to a t1/2 for efflux of 37 h). The relatively slow efflux of cholesterol from fibroblasts in comparison to rat hepatoma cells was observed previously with micellar and vesicular phospholipid-containing acceptors, which promote efflux by a mechanism involving the diffusion of cholesterol in the aqueous phase between the plasma membrane and the acceptor particles. When plotted against the logarithm of HDL concentration, the isotherms for efflux are centered at 300 and 100 micrograms of HDL protein/ml with the hepatoma cells and fibroblasts, respectively. These concentrations are 8-150 times greater than the corresponding values for Kd of specific HDL binding (2 and 12 micrograms of protein/ml, for hepatoma cells and fibroblasts, respectively). The treatment of HDL with tetranitromethane reduces the lipoprotein's affinity for specific cell-surface binding sites by 80-90%. However, at HDL concentrations of 5-60 micrograms of protein/ml, this treatment does not significantly inhibit cholesterol efflux from hepatoma cells, and inhibits efflux from fibroblasts an average of about 15%. Over the same range of concentrations, nitration alters influx by amounts less than 30% in the two cell types. These effects on flux do not parallel the reduced affinity of nitrated HDL for specific cell-surface binding sites. In summary, the present results do not support the concept that cholesterol transfer is facilitated by the specific cell-surface binding of HDL, but are consistent with the aqueous diffusion model of cholesterol transfer between cells and lipoproteins.  相似文献   

19.
20.
In order to determine the effects of a plasma phospholipid transfer protein on the transfer of phospholipids from very low density lipoproteins (VLDL) to high density lipoproteins (HDL) during lipolysis, biosynthetically labeled rat 32P-labeled VLDL was incubated with human HDL3 and bovine milk lipoprotein lipase (LPL) in the presence of the plasma d greater than 1.21 g/ml fraction or a partially purified human plasma phospholipid transfer protein (PTP). The addition of either the PTP or the d greater than 1.21 g/ml fraction resulted in a 2- to 3-fold stimulation of the transfer of phospholipid radioactivity from VLDL into HDL during lipolysis. In the absence of LPL, the PTP caused a less marked stimulation of transfer of phospholipid radioactivity. Both the d greater than 1.21 g/ml fraction and the PTP enhanced the transfer of VLDL phospholipid mass into HDL, but the percentage transfer of phospholipid radioactivity was greater than that of phospholipid mass, suggesting stimulation of both transfer and exchange processes. Stimulation of phospholipid exchange was confirmed in experiments where PTP was found to augment transfer of [14C]phosphatidylcholine radioactivity from HDL to VLDL during lipolysis. In experiments performed with human VLDL and human HDL3, both the d greater than 1.21 g/ml fraction and the PTP were found to stimulate phospholipid mass transfer from VLDL into HDL during lipolysis. Analysis of HDL by non-denaturing polyacrylamide gradient gel electrophoresis showed that enhanced lipid transfer was associated with only a slight increase in particle size, suggesting incorporation of lipid by formation of new HDL particles. In conclusion, the plasma d greater than 1.21 g/ml fraction and a plasma PTP enhance the net transfer of VLDL phospholipids into HDL and also exchange of the phospholipids of VLDL and HDL. Both the transfer and exchange activities of PTP are stimulated by lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号