首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
DNase-I-dependent dissociation of erythrocyte cytoskeletons   总被引:2,自引:0,他引:2       下载免费PDF全文
The human erythrocyte contains a complex of peripheral membrane proteins which forms an extensive network or cytoskeleton on the cytoplasmic membrane surface. When I treat erythrocyte cytoskeletons with deoxyribonuclease I (DNase I), the cytoskeletons dissociate and erythrocyte actin is solubilized. The dissociation of the cytoskeletons by DNase I parallels the disruption of actin filaments in vitro by DNase I and is blocked by the addition of action to the DNase I. Large protein complexes remain after DNase I disrupts the cytoskeletons, but these complexes are no longer visible in the light microscope nor sedimentable and are selectively depleted with respect to actin. From these studies, I suggest that DNase I binds to and solubilizes actin, which serves as a structural link between protein complexes in the erythrocyte cytoskeleton.  相似文献   

2.
Spectrin and actin were isolated and their oligomeric state after association with hemin at various conditions was studied. Intact cytoskeletons were prepared by Triton X-100 extraction of red blood cells and incubated with hemin and their stability analyzed by the appearance of dissociated proteins in the supernatant. The cytoskeletons dissociated in a time, temperature and hemin concentration-dependent manner. Following 18 hours incubation in the presence of 0.3 mM hemin there was no dissociation at 4 degrees C, while at the same hemin concentration after 2 hours complete dissociation of the cytoskeletons occurred at 37 degrees C. Microscopy indicated that the cytoskeletons incubated with hemin lost their "cell like" shapes in a time dependent manner. Hemin applied to intact cells also caused dissociation of their cytoskeletons as judged by the failure to separate integer cytoskeletons from red cells treated with hemin. From hemin-induced dissociation profiles of separated actin, spectrin and whole cytoskeletons under various conditions, a mechanism of cytoskeleton breakdown was analyzed, as a release of band 4.1 in the first step which is followed by spectrin dimerization and eventually dissociation of the entire cytoskeletons.  相似文献   

3.
The polymerization of actin in the presence of spectrin tetramers and band 4.1 isolated from the human erythrocyte has been measured using a fluorescence energy transfer technique. The results show that the cross-linking of spectrin-actin complexes by band 4.1 results in a limited depolymerization of actin filaments and a concomitant rise in the critical actin concentration. The phenomenon may explain in part the existence of actin in the erythrocyte cytoskeleton as short oligomers rather than as long filaments.  相似文献   

4.
The effects of phosphorylation of spectrin on the properties of the cytoskeletal network of the human erythrocyte have been studied. A suspension of the cytoskeletal residues obtained after extraction of the ghosts with the nonionic detergent Triton X-100 forms a gel on addition of membrane kinase and ATP. Phosphorylation has no effect on the association state of purified spectrin. No species higher than a tetramer of polypeptide chains is formed in vitro; in the absence of divalent cations, this tetramer is an entity liberated from and evidently present in the membrane. It has not so far proved possible to detect any F-actin in the cytoskeleton before or after phosphorylation. It is suggested that the consequence of phosphorylation is formation of additional interactions between spectrin and monomeric actin molecules. This view is supported by the formation, after phosphorylation of the Triton-extracted cytoskeleton, of an insoluble mass of protein on treatment with a cross-linking reagent. In the absence of divalent cations, a series of oligomeric species is progressively liberated from the cytoskeleton on extraction with solutions of low ionic strength. These oligomers contain actin as well as spectrin, and are thought to result from disruption of the network by random denaturation of the mono meric actin in the absence of divalent metal ions. A schematic view of the effects of phosphorylation on the structure of the cytoskeleton is presented.  相似文献   

5.
A new and rapid method is described for the preparation of protein 4.1, the protein which modulates the interaction between spectrin and actin in the membrane cytoskeleton of the red cell. The method is based on the dissociation of purified membrane cytoskeletons in concentrated Tris at neutral pH, followed by gel filtration in the same medium. This procedure also yields spectrin and actin, as well as the fourth cytoskeletal constituent, protein 4.9, in relatively pure form, and ankyrin. Protein 4.1 is monomeric under our conditions of solvent and protein concentration, with a relative molecular mass, as determined from sedimentation equilibrium, of about 78 000; its sedimentation coefficient and Stokes' radius are those of a globular, though somewhat asymmetric or flexible molecule. It forms a strong complex with F-actin and spectrin. Protein 4.9 is also recovered in active form, and will bind strongly to F-actin.  相似文献   

6.
Hereditary spherocytosis (HS) is an inherited abnormality of red cell shape and results from defective interactions amongst the components of the cytoskeleton. It is known that spectrin/actin dissociates in low ionic strength media from ghosts and cytoskeletons at a rate which is slower for HS than normal preparations. Hybridization experiments have established that this behaviour is not due to a defective spectrin or actin but resides in a spectrin-binding component of the membrane [Hill, Sawyer, Howlett & Wiley (1981) Biochem. J. 201, 259-266]. In the present study erythrocyte shells have been examined in low ionic strength media and a similar difference in the rate of solubilization has been revealed. Since band 4.1 (but not band 2.1) is a common component of cytoskeletons and shells it is possible that 4.1 may be abnormal in the HS condition. The interaction of band 4.1 with spectrin/actin was examined by low shear falling ball viscometry. The addition of a mixture of band 2.1 and 4.1 to a solution of actin and spectrin tetramer increased the viscosity due to cross-linking of the cytoskeletal elements by band 4.1. When band 2.1/4.1 mixtures were derived from five HS families the viscosity was increased to a greater extent than in the normal controls. This difference was not a result of alterations in the calcium dependence of the spectrin/actin-band 4.1 interaction. The results imply that band 4.1 may be defective in the HS condition.  相似文献   

7.
The spectrin-4.1-actin complex isolated from the cytoskeleton of human erythrocyte [3] was found to be similar to muscle F-actin in several aspects: Both the complex and F-actin nucleate cytochalasin-sensitive actin polymerization; both bind dihydrocytochalasin B with similar binding constants; both can be depolymerized by DNase I with loss of cytochalasin binding activity. From these results, we conclude that the actin in the complex is in an oligomeric form. However, the presence of spectrin and band 4.1 in the complex not only stabilized the actin in the complex as evidenced by its resistance to depolymerization in low-ionic-strength conditions and to DNase I as compared with F-actin, but also altered the characteristics of the binding site(s) for cytochalasins believed to be located at the “barbed” (polymerizing) end of the oligomeric actin.  相似文献   

8.
Following parasitization by Plasmodium falciparum, numerous changes take place in the host erythrocyte membrane. In this study, we used the technique of whole cell mount electron microscopy to determine if the ultrastructure of the erythrocyte cytoskeleton changed following parasitization with knobby and knobless strains of P. falciparum. Using this technique, a network of spectrin filaments (3-10 X 45-120 nm) branching from electron dense junctions (15-25 nm in diameter), the presumed site of bands 4.1 and actin, were visualized. The overall architecture of normal and parasitized erythrocyte cytoskeletons was the same: however, additional patches (35 to 60 nm in size) and aggregates (30 X 150 nm) of electron dense material were present in parasitized skeletons. The ultrastructure of knobby and knobless cytoskeletons was similar, except knobless skeletons usually did not possess the larger aggregates of material. Antigens associated with the erythrocyte cytoskeleton of cells infected with knobby and knobless strains, but not uninfected cells, were demonstrated by indirect immunofluorescence. Results suggest that antigens, associated with the erythrocyte cytoskeleton, may contribute to perturbations in the host erythrocyte membrane.  相似文献   

9.
Gibbon BC  Kovar DR  Staiger CJ 《The Plant cell》1999,11(12):2349-2363
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium dissociation constant measured for LATB binding to maize pollen actin was determined to be 74 nM. This high affinity for pollen actin suggested that treatment of pollen with LATB would have marked effects on actin function. Indeed, LATB inhibited maize pollen germination half-maximally at 50 nM, yet it blocked pollen tube growth at one-tenth of that concentration. Low concentrations of LATB also caused partial disruption of the actin cytoskeleton in germinated maize pollen, as visualized by light microscopy and fluorescent-phalloidin staining. The amounts of filamentous actin (F-actin) in pollen were quantified by measuring phalloidin binding sites, a sensitive assay that had not been used previously for plant cells. The amount of F-actin in maize pollen increased slightly upon germination, whereas the total actin protein level did not change. LATB treatment caused a dose-dependent depolymerization of F-actin in populations of maize pollen grains and tubes. Moreover, the same concentrations of LATB caused similar depolymerization in pollen grains before germination and in pollen tubes. These data indicate that the increased sensitivity of pollen tube growth to LATB was not due to general destabilization of the actin cytoskeleton or to decreases in F-actin amounts after germination. We postulate that germination is less sensitive to LATB than tube extension because the presence of a small population of LATB-sensitive actin filaments is critical for maintenance of tip growth but not for germination of pollen, or because germination is less sensitive to partial depolymerization of the actin cytoskeleton.  相似文献   

10.
The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.  相似文献   

11.
Hemin-promoted peroxidation of red cell cytoskeletal proteins   总被引:1,自引:0,他引:1  
Hemin-induced crosslinking of the erythrocyte membrane proteins was analyzed at three levels: (i) whole membranes, (ii) integrated or dissociated cytoskeletons, and (iii) isolated forms of the three main cytoskeletal proteins, spectrin, actin, and protein 4.1. Addition of H2O2 and hemoglobin to resealed membranes from without did not affect any of the membrane proteins. Hemin that can transport across the membrane induced, in the presence of H2O2, crosslinking of protein 4.1 and spectrin. Both free hemin and hemoglobin added with H2O2 induced crosslinking of integer cytoskeletons and mixtures of isolated cytoskeletal proteins, but hemin was always more active. Of the three major cytoskeletal proteins, spectrin and protein 4.1 were most active while the participation of actin was only minor. The yield of crosslinked products was increased in all reaction mixtures with pH, with an apparent pK above 9.0. Replacement of H2O2 by phenylhydrazine and tert-butyl hydroperoxide resulted in crosslinking of the same proteins, but with lower activity than H2O2. Bityrosines, which were identified by their specific fluorescence emission characteristics, were formed in reaction mixtures containing hemin and hydrogen peroxide and either spectrin or protein 4.1, but not actin. On the basis of fact that bityrosines were revealed only in reaction mixtures that produced protein adducts, formation of intermolecular bityrosines was analyzed to be involved in crosslinking of the cytoskeletal proteins. Since the levels of membrane-intercalated hemin are correlated with aggregation of membrane proteins, it is suggested that the peroxidative properties of hemin are responsible for its toxicity.  相似文献   

12.
The spectrin-based membrane skeleton plays an important role in determining the distributions and densities of receptors, ion channels, and pumps, thus influencing cell shape and deformability, cell polarity, and adhesion. In the paradigmatic human erythrocyte, short tropomodulin-capped actin filaments are cross-linked by spectrin into a hexagonal network, yet the extent to which this type of actin filament organization is utilized in the membrane skeletons of nonerythroid cells is not known. Here, we show that associations of tropomodulin and spectrin with actin in bovine lens fiber cells are distinct from that of the erythrocyte and imply a very different molecular organization. Mechanical disruption of the lens fiber cell membrane skeleton releases tropomodulin and actin-containing oligomeric complexes that can be isolated by gel filtration column chromatography, sucrose gradient centrifugation and immunoadsorption. These tropomodulin-actin complexes do not contain spectrin. Instead, spectrin is associated with actin in different complexes that do not contain tropomodulin. Immunofluorescence staining of isolated fiber cells further demonstrates that tropomodulin does not precisely colocalize with spectrin along the lateral membranes of lens fiber cells. Taken together, our data suggest that tropomodulin-capped actin filaments and spectrin-cross-linked actin filaments are assembled in distinct structures in the lens fiber cell membrane skeleton, indicating that it is organized quite differently from that of the erythrocyte membrane skeleton.  相似文献   

13.
Calmodulin was detected in dogfish erythrocyte lysates by means of phosphodiesterase activation. Anucleate dogfish erythrocyte cytoskeletons bound calmodulin. Binding of calmodulin was calcium- dependent, concentration-dependent, and saturable. Cytoskeletons consisted of a marginal band of microtubules containing primarily tubulin, and trans-marginal band material containing actin and spectrinlike proteins. Dogfish erythrocyte ghosts and cytoskeletons were found to contain a calcium-dependent calmodulin-binding protein, CBP, by two independent techniques: (a) 125I-calmodulin binding to cytoskeletal proteins separated by SDS PAGE, and (b) in situ azidocalmodulin binding in whole anucleate ghosts and cytoskeletons. CBP, with an apparent molecular weight of 245,000, co-migrated with the upper band of human and dogfish erythrocyte spectrin. CBP was present in anucleate ghosts devoid of marginal bands and absent from isolated marginal bands. CBP therefore appears to be localized in the trans- marginal band material and not in the marginal band. Similarities between CBP and high molecular weight calmodulin-binding proteins from mammalian species are discussed.  相似文献   

14.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

15.
In this paper we describe our investigations on the association of receptors for the epidermal growth factor (EGF) with the cytoskeleton of A431 cells. In order to determine which filamentous system the EGF receptors are associated to, the cytoskeletal fraction to which these receptors bind was isolated. Second, the possible colocalization of EGF receptors with different cytoskeletal elements was examined in A431 cells. By selective extractions of the A431 cytoskeletons, it is shown that more than 90% of the cytoskeleton-associated EGF receptors are removed from the cytoskeletons together with the actin filamentous system. During several cycles of poly- and depolymerization of actin isolated from A431 cells, the EGF receptor precipitates together with the actin containing filaments, indicating that EGF receptors are able to bind in vitro to actin filaments. With immunofluorescence studies we show that EGF receptors especially colocalize with actin filaments. These results demonstrate that the EGF receptor is associated specifically with actin filaments in A431 cells.  相似文献   

16.
Actin was isolated from erythrocyte ghosts. It is identical to muscle actin in its molecular weight, net charge, ability to polymerize into filaments with the double helical morphology, and its decoration with heavy meromyosin (HMM). when erythrocyte ghosts are incubated in 0.1 mM EDTA, actin and spectrin are solubilized. Spectrin has a larger molecular weight than muscle myosin. When salt is added to the EDTA extract, a branching filamentous polymer is formed. However, when muscle actin and the EDTA extract are mixed together in the presence of salt, the viscosity achieved is less than the viscosity of the solution if spectrin is omitted. Thus, spectrin seems to inhibit the polymerization of actin. If the actin is already polymerized, the addition of spectrin increases the viscosity of the solution, presumably by cross-linking the actin filaments. The addition of HMM of trypsin to erythrocyte ghosts results in filament formation in situ. These agents apparently act by detaching erythrocyte actin from spectrin, thereby allowing the polmerization of one or both proteins to occur. Since filaments are not present in untreated erythrocyte ghosts, we conclude that erythrocyte actin and spectrin associate to form an anastomosing network beneath the erythrocyte membrane. This network presumably functions in restricting the lateral movement of membrane-penetrating particles.  相似文献   

17.
Extracellular calmodulin(CaM)plays significant roles in many physiological processes,but little is known about its mechanism of regulating stomatal movements.In this paper,whether CaM exists in the guard cell walls of Arabidopsis and whether depolymerization of actin cytoskeleton is involved in extracellular CaM-induced stomatal closing are investigated.It is found that CaM exists in guard cell walls of Arabidopsis,and its molecular weight is about 17 kD.Bioassay using CaM antagonists W7-agarose and anti-CaM serum shows that the endogenous extracellular CaM promotes stomatal closure and delays stomatal opening.The long radial actin filaments in guard cells undergo disruption in a time-dependent manner during exogenous CaM-induced stomatal closing.Pharmacological experiments show that depolymerization of actin cytoskeleton enhances the effect of exogenous CaM-induced stomatal closing and polymerization reduces the effect.We also find that exogenous CaM triggers an increase in [Ca2+]cyt of guard cells.If [Ca2+]cyt increase is blocked with EGTA,exogenous CaM-induced stomatal closure is inhibited.These results indicate that extracellular CaM causes elevation of [Ca2+]cyt in guard cells,subsequently resulting in disruption of actin filaments and finally leading to guard cells closure.  相似文献   

18.
The cytoskeleton of isolated murine primitive erythrocytes   总被引:1,自引:0,他引:1  
Summary Cytoskeletons of primitive erythrocytes have been isolated from the embryos of day 12 pregnant C57/Bl mice and examined by transmission electron microscopy, immunofluorescence microscopy, and SDS-polyacrylamide gel electrophoresis. Microtubules are the most prominent cytoskeletal component. They are found either singly or organized into loose bundles just under the plasma membrane, but do not form classical marginal bands in most cells. Immunofluorescence with a polyclonal tubulin antiserum confirms this distribution and further reveals numerous mitotic figures among the cells. Rhodamine-conjugated phalloidin and heavy meromyosin labeling reveal that actin is localized in the cortex of the primitive erythrocyte in the form of 6 nm filaments. Antibody directed against avian erythrocyte alpha spectrin demonstrates that spectrin is also found in the cortex. Occasional 10-nm intermediate filaments, observed in the primitve erythrocytes by electron microscopy, are believed to be of the vimentin class based on positive reaction of the cells with vimentin-specific antiserum. In addition, a band in erythrocyte cytoskeletons comigrates in SDS-polyacrylamide gels with vimentin isolated from mouse kidney. Spectrin and actin were also found to be associated with the membrane of primitive erythrocytes when membrane ghost preparations were analyzed by SDS-polyacrylamide gel electrophoresis.  相似文献   

19.
We attached paraformaldehyde-fixed human erythrocyte ghosts to coated coverslips and sheared them to expose the cytoskeleton. Quick-freeze, deep-etch, rotary-replication, or tannic acid/osmium fixation and plastic embedding revealed the cytoskeleton as a dense network of intersecting straight filaments. Previous negative stain studies on spread skeletons found 5-6 spectrin tetramers intersecting at each actin oligomer, with an estimated 250 such intersections/microns 2 of membrane. In contrast, we found 3-4 filaments at each intersection and approximately 400 intersections/microns 2 of membrane. Immunogold labeling verified that the filaments were spectrin, but their lengths (29-37 nm) were approximately one-third that of extended spectrin dimers. The length and diameter of the filaments were sufficient to accommodate spectrin dimers, but not spectrin tetramers. Our results suggest that, in situ, spectrin dimers may associate as hexamers and octamers, rather than tetramers. We present several explanations that can reconcile our observations on intact cytoskeletons with previous reports on spread material. Extracting sheared ghosts with solutions of low ionic strength removed the cytoskeleton to reveal projections from the cytoplasmic surface of the membrane. These projections contained band 3, as shown by immunogold labeling, and they aggregated to a similar extent as intramembrane particles (IMP) when the cytoskeleton was removed, suggesting a direct relationship between these structures. Quantification indicated a stoichiometry of 2 IMP for each cytoplasmic projection. Cytoplasmic projections presumably contain other proteins besides band 3 since further treatment with high ionic strength solutions extracts peripheral proteins and reduces the diameter of projections by approximately 3 nm.  相似文献   

20.
Ruetz T  Cornick S  Guttman JA 《PloS one》2011,6(5):e19940
Various enteric bacterial pathogens target the host cell cytoskeletal machinery as a crucial event in their pathogenesis. Despite thorough studies detailing strategies microbes use to exploit these components of the host cell, the role of the spectrin-based cytoskeleton has been largely overlooked. Here we show that the spectrin cytoskeleton is a host system that is hijacked by adherent (Entropathogenic Escherichia coli [EPEC]), invasive triggering (Salmonella enterica serovar Typhimurium [S. Typhimurium]) and invasive zippering (Listeria monocytogenes) bacteria. We demonstrate that spectrin cytoskeletal proteins are recruited to EPEC pedestals, S. Typhimurium membrane ruffles and Salmonella containing vacuoles (SCVs), as well as sites of invasion and comet tail initiation by L. monocytogenes. Spectrin was often seen co-localizing with actin filaments at the cell periphery, however a disconnect between the actin and spectrin cytoskeletons was also observed. During infections with S. Typhimurium ΔsipA, actin-rich membrane ruffles at characteristic sites of bacterial invasion often occurred in the absence of spectrin cytoskeletal proteins. Additionally, early in the formation of L. monocytogenes comet tails, spectrin cytoskeletal elements were recruited to the surface of the internalized bacteria independent of actin filaments. Further studies revealed the presence of the spectrin cytoskeleton during SCV and Listeria comet tail formation, highlighting novel cytoplasmic roles for the spectrin cytoskeleton. SiRNA targeted against spectrin and the spectrin-associated proteins severely diminished EPEC pedestal formation as well as S. Typhimurium and L. monocytogenes invasion. Ultimately, these findings identify the spectrin cytoskeleton as a ubiquitous target of enteric bacterial pathogens and indicate that this cytoskeletal system is critical for these infections to progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号