首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. The magnitude of DNA modulation in rat 9L gliosarcoma cells after a brief exposure to bromodeoxyuridine (BrdU) was studied by assaying colony-forming efficiency (CFE) and the number of sister chromatid exchanges (SCEs) per metaphase. The CFE assay showed that a 1-hr exposure to BrdU, at concentrations ranging from 10 to 1000 μ M, produced a maximum cell kill of 5%. After a 2-hr exposure to 20 μ M BrdU, the surviving fraction was 0.99, and even at a BrdU concentration of 1000 μ M, 77% of the 9L cells survived. Compared with control cultures, the relative number of SCEs per metaphase in treated cultures was increased after a 1-hr exposure to BrdU at concentrations of 100 μ M or more and after a 2-hr exposure to concentrations of 20 μ M or more; no increase was observed in cells treated for 30 min with BrdU at concentrations up to 1000 μ M. When the treated cells were allowed to grow in BrdU-free growth medium, the number of SCEs per metaphase returned to the control level within 24 hr, even after exposure to BrdU at concentrations as high as 1000 μ M. These results demonstrate that exposure to BrdU at concentrations of up to 1000 μ M for 30 min, 100 μ M for 1 hr, and 20 μ M for 2 hr causes little modulation of DNA.  相似文献   

2.
C Cerni 《In vitro》1984,20(4):305-313
The frequency of sister chromatid exchange (SCE) was determined in a nontransformed diploid rat cell line, FR3T3 , under several tissue culture variables such as cultivation temperature, growth conditions of cells, and concentrations of 5-bromo-2'-deoxyuridine (BrdU). The conclusions to be drawn from these experiments are: (a) The cell growth and mechanisms(s) of SCE formation in FR3T3 cells are largely temperature independent (or efficiently regulated) in the range between 33 and 40.5 degrees C. (b) The concentration limits for BrdU incorporation are 5 to 100 microM; baseline frequency is about 11 SCE/metaphase (constant up to 20 microM BrdU) and increases only moderately at higher BrdU concentrations. (c) Toxic levels of BrdU (150 microM) cause a decrease of SCE rates below that found at 100 microM, presumably due to selective cell death. (d) Keeping cells growth arrested over a long period causes substantial SCE induction after replating. (e) Induced increase of SCEs probably occurs in this manner during the first cell cycle after release from growth arrest. It is no longer detectable after the fourth consecutive cell division.  相似文献   

3.
The number of sister-chromatid exchanges (SCEs) per metaphase was determined in Chinese hamster ovary cells after 16 h exposure to methylglyoxal (MG) concentrations ranging from 0.1 to 0.75 mM. MG produced an increase of SCE frequency that proved to be dose-dependent, and to reach a maximum of 2 X baseline at the highest nontoxic concentration (0.5 mM).  相似文献   

4.
Abstract. The time- and dose-dependency of the mutagenic effects of bromodeoxyuridine (BrdU), a thymidine analogue used for cell kinetics studies in vivo and in vitro , were investigated in FM3A cells. Cells incubated with 50–1000 fin BrdU for 72 h showed some inhibition of growth. Cells cultured in BrdU-free medium for 3 d after a 30 min or 2 h exposure to BrdU showed no growth inhibition, while those previously exposed for 24 h to BrdU showed retarded growth. After a 30 min exposure, 60% of cells were labelled with BrdU; after 2 h 70%; and after 24 h almost 100%. After incubation in BrdU-free medium for 3 d (the time required for this cell line to express mutation), cells previously treated for 30 min or 2 h showed reduced BrdU positivity, whereas almost 100% of those treated for 24 h remained BrdU positive. The mutation rate, determined by the number of colonies resistant to ouabain (2 mM) and 6-thioguanine (10 μ) 3 d after exposure to BrdU, was not affected by a 30 min treatment with up to 1000 μ BrdU. Cells treated for 1 or 2 h showed increased resistance to ouabain after exposure to BrdU at concentrations above 100 μM; cells treated for 12 or 24 h showed an increased mutation rate at BrdU concentrations above 50 μM… The number of colonies resistant to 6-thioguanine did not increase in cells treated with BrdU at concentrations up to 1000 μM for 1, 12 or 24 h. We cannot conclude with certainty that brief exposure to BrdU does not modulate DNA to the point of mutation. This study may serve as a guideline for limiting the dose and time of exposure to BrdU for cell kinetics studies in vivo and in vitro.  相似文献   

5.
We measured the frequency of sister chromatid exchanges (SCEs) in human and mouse peripheral lymphocytes using doses of bromodeoxyuridine (BrdU) ranging from 30 nM to 100 microM (human) and from 10 nM to 10 microM (mouse). Heparinized peripheral blood was obtained from five healthy nonsmokers and from six C57B1/6 male mice. The blood was stimulated with PHA (human) or lipopolysaccharide (LPS, mouse) and grown for the first of two cell cycles in BrdU. Metaphase chromosomes were denatured and exposed to a monoclonal antibody reactive to single-stranded DNA containing BrdU. A second antibody was used to label the first antibody with fluorescein, and propidium iodide was used as a counterstain. Second-division metaphases were thus differentially stained red to indicate DNA content and yellow-green to indicate the presence of BrdU. The results indicate that the baseline SCE frequency in human and mouse peripheral lymphocytes is 3.6 and 2.4 SCEs per cell per generation, and that in the human these frequencies are invariant at the lowest BrdU levels. This suggests that SCEs are an integral part of DNA replication, even in the absence of agents known to induce SCEs. The distribution of SCEs per chromosome was analyzed and found to be Poisson-distributed in all 24 murine cultures and in 25 of 36 human cultures. The distribution of SCEs per chromosome may be due to either species-specific chromosome packaging or to karyotypic differences between the species.  相似文献   

6.
Sister chromatid exchanges (SCEs) are induced in cultured Chinese hamster cells by treatment with 5-bromodeoxyuridine (BrdU) or with Hoechst 33258 (H33258) plus BrdU. The SCE frequencies depend upon the number of H33258 molecules available per cell (or per base pair) and the number of brdU molecules available per cell, and not solely upon molarity. In addition, H 33258 and BrdU act synergistically to induce SCEs. At low BrdU concentrations H33258 induces very few SCEs. At high BrdU concentrations and similar concentrations of H33258, however, SCE frequencies are significantly increased. SCE frequencies decrease with time in successively harvested cells because of the depletion of H33258 from the medium due to DNA binding.  相似文献   

7.
Summary When [3H]dC was added with a high dose (4x10-1 mM) of dT to human blood lymphocyte cultures, much heavier labeling of interphase nuclei and metaphase chromosomes was observed compared with that in cultures treated with [3H]dC alone. This observation indicates that in the presence of excess dT, exogenous dC is included into cytosine bases of DNA, releasing the cells from the thymidine block.BrdC 5x10-2 mM added with a high dose of dT (4x10-1 to 1.0 mM) to the cultures did not relieve the thymidine block as determined from the percentage of metaphases of the first to third divisions. It is concluded that BrdC, in contrast to dC, is not utilized as a cytosine DNA precursor even in the presence of high concentrations of dT.The frequency of SCEs per cell was the same when studied with the aid of BrdC and BrdU used under similar conditions. The distribution of SCEs among chromosomes was also identical for both analogues: The number of SCEs was significantly higher than expected in chromosomes of group B and lower than expected in chromosomes of groups E, F, and G.  相似文献   

8.
In experiments to assess the effects of several biological, chemical, and physical variables on sister-chromatid exchange (SCE) induction in cultured lymphocytes exposed to mitomycin C (MMC) before PHA stimulation we observed: (1) high SCE frequencies in female cells, and normal SCE frequencies in Y-bearing metaphases in mixed cultures containing equal numbers of MMC-treated female lymphocytes and untreated male lymphocytes; (2) small, but statistically significant, decreases in SCEs with increasing pH after G0 exposure in the pH range 6.6–7.6; (3) pronounced reductions in MMC-induced SCEs in lymphocytes exposed at 4°C vs. 37°C. In other studies, SCE induction was evaluated in cultures exposed during G0 to MMC concentrations ranging from 0.25 to 2.5 μg/ml for varying time intervals ranging from 5 min to 24 h. For all concentrations tested SCE induction varied as a linear function of G0 exposure time. To compare SCE induction between cultures, we calculated the mean frequencies of SCEs induced per metaphase/unit dose MMC/unit G0 exposure time (SCE/μg/h). A mean frequency of 20.7 ± 4.8 SCE/μg/h was observed for 41 lymphocyte cultures suggesting that a single term adequately describes the rate of SCE induction following G0 exposure to a 10-fold range in concentration of MMC for time intervals of 30 min to 24 h.  相似文献   

9.
The protocol of ionomycin followed by 6-dimethylaminopurine (6-DMAP) is commonly used for activation of oocytes and reconstituted embryos. Since numerous abnormalities and impaired development were observed when oocytes were activated with 6-DMAP, this protocol needs optimization. Effects of concentration and treatment duration of both drugs on activation and development of goat oocytes were examined in this study. The best oocyte activation (87-95%), assessed by pronuclear formation, was obtained when oocytes matured in vitro for 27 hr were treated with 0.625-20 microM ionomycin for 1 min before 6-hr incubation in 2 mM 6-DMAP. Progressional reduction of time for 6-DMAP-exposure showed that the duration of 6-DMAP treatment can be reduced to 1 hr from the second up to the fourth hour after ionomycin, to produce activation rates greater than 85%. Activation rates of oocytes in vitro matured for 27, 30, and 33 hr were higher (P < 0.05) than that of oocytes matured for 24 hr when treated with ionomycin plus 1-hr (the third hour) 6-DMAP, but a 4-hr incubation in 6-DMAP enhanced activation of the 24-hr oocytes. Goat activated oocytes began pronuclear formation at 3 hr and completed it by 5-hr post ionomycin. An extended incubation in 6-DMAP (a) impaired the development of goat parthenotes, (b) quickened both the release from metaphase arrest and the pronuclear formation, and (c) inhibited the chromosome movement at anaphase II (A-II) and telophase II (T-II), leading to the formation of one pronucleus without extrusion of PB2. In conclusion, duration, concentration, and timing of ionomycin and 6-DMAP treatment had marked effects on goat oocyte activation, and to obtain better activation and development, goat oocytes matured in vitro for 27 hr should be activated by 1 min exposure to 2.5 microM ionomycin followed by 2 mM 6-DMAP treatment for the third hour.  相似文献   

10.
A significant decrease in the baseline of sister-chromatid exchanges (SCEs) was observed in cultured human lymphocytes, if 5-bromodeoxyuridine (BrdU) was added after 60 h of culture, and the cells were harvested at least 24–30 h after BrdU exposure. This decrease is supposed to occur if at least one cell division takes place before the addition of BrdU. For cytogenetic monitoring of mutagenic environmental factors, using human lymphocyte cultures, it is assumed that two time periods are sufficient for comparison.  相似文献   

11.
BrdU (5-bromodeoxyuridine)-33258 Hoechst methods have been adapted for in vivo analyses of replication kinetics, sister chromatid differentiation and sister chromatid exchange (SCE) formation in mice. Sufficient in vivo BrdU substitution for cytological detection was effected with multiple intraperitoneal injections of the analogue. The combination of centromere staining asymmetry and sister chromatid differentiation at metaphase permits unambiguous determination of the number of replications in BrdU and dT (deoxythymidine) undergone by individual cells. Late-replicating regions in marrow and spermatogonial chromosomes are highlighted by bright fluorescence after sequential incorporation of BrdU followed by dT during a single DNA synthesis period. SCEs are analyzed in marrow and spermatogonial metaphases after successive complete cycles of BrdU and dT incorporation. Significant induction of SCE was observed with both mitomycin C and cyclophosphamide; the latter drug requires host-mediated activation to be effective. In meiotic metaphase cells harvested two weeks after BrdU incorporation, satellite DNA asymmetry, sister chromatid differentiation and SCE could be detected in a few chromosomes, most frequently the X and the Y.  相似文献   

12.
The induction of chromosome aberrations, micronuclei and SCEs was studied in hepatocytes of F344 rats exposed in vivo to hepatocarcinogens. Hepatocytes were isolated and allowed to proliferate in Williams' medium E supplemented with epidermal growth factor. Cells were fixed after a culture period of 48 h. Oral administration of dimethylnitrosamine at doses of 2.5-20 mg/kg body weight (bw) induced (1) chromosome aberrations in up to 27% of the metaphase cells 2-48 h after its administration, (2) SCEs with a frequency of up to 0.9 per chromosome 2-48 h after its administration, and (3) micronuclei in up to 2.9% of the cells 16-48 h after its administration. Oral administration of 2-acetylaminofluorene at doses of 6.25-200 mg/kg bw induced (1) chromosome aberrations in up to 35% of the metaphase cells after 2-48 h, (2) SCEs at up to 0.9 per chromosome and (3) micronuclei in up to 2.5% of the cells with a maximum after 4 h. Oral administration of CCl4, a non-genotoxic hepatocarcinogen, at a dose of 1600 mg/kg bw did not induce chromosome aberrations, SCEs or micronuclei within 4-72 h. Intraperitoneal injections of Trp-P-1, Glu-P-1, MeIQx, IQ and nitro-IQ resulted in chromosome aberrations in up to 16% of the metaphase cells and SCEs at up to 0.9 per chromosome, while injections of Trp-P-2 and Glu-P-2 produced SCEs at up to 0.7 and 1.1 per chromosome, respectively. The present method of in vivo cytogenetic assay using rats without partial hepatectomy or mitogen treatment in vivo should be useful for evaluating the tumor-initiating activities of hepatocarcinogens.  相似文献   

13.
Subpicomolar concentrations of human platelet-derived transforming growth factor beta (TGF-beta) inhibited growth factor-stimulated DNA synthesis in primary cultures of adult rat hepatocytes. This inhibition was not the result of changes in the size of intracellular pools of 3H-thymidine and was not dependent on the state of confluence of the cells. A 24-hr exposure to TGF-beta either before or after insulin/EGF stimulation was as inhibitory on DNA synthesis between 48 and 72 hr of culture as was TGF-beta present throughout 72 hr of culture. From 12 hr in culture to 24 hr, hepatocyte EGF binding sites dropped from about 230,000 to 85,000 per cell with no significant change in Kd, but with a loss in capacity for EGF-induced receptor down-regulation. Maximally inhibitory concentrations of TGF-beta did not compete with EGF for the EGF receptor, and a 4- to 24-hr exposure to TGF-beta did not alter subsequent EGF binding. Coincubation of hepatocytes with TGF-beta and EGF did not influence the 60% reduction in EGF binding sites produced by EGF alone. In addition, TGF-beta did not prevent EGF-induced autophosphorylation of the 170,000 dalton EGF receptor in membranes from whole liver. Our studies suggest that TGF-beta regulates hepatocyte growth independently of changes in EGF receptor number, ligand affinity, or postbinding autophosphorylation.  相似文献   

14.
A stable staining procedure of sister-chromatid differentiation (SCD) using a monoclonal antibromodeoxyuridine (BrdU) antibody was newly established by combining it with the immunoperoxidase reaction (3,3'-diaminobenzidine, DAB reaction). This procedure permitted detection of SCD and SCE at very low BrdU concentrations. SCD was not usually observed below 2.0 micrograms/ml BrdU with flame-dried chromosome slides. When chromosome slides were prepared by air-drying over 37 degrees C warm water, SCD was detected at 10.0, 5.0, 1.0, 0.5, 0.3 and 0.2 micrograms/ml BrdU with FPG and even at 0.1 microgram/ml BrdU with the antibody technique. SCE levels were evaluated using the antibody technique and endomitotic analysis with FPG at low BrdU concentrations (1.0, 0.5, 0.3, 0.2 microgram/ml) in two BS B-lymphoblastoid cell lines (LCLs). Even though the BS SCE level was approximately 70 per cell at 10 micrograms/ml, the value decreased to the level of 20-30 SCE per cell at 0.1 microgram/ml with the antibody technique. In BrdU-labelled BS endomitoses, single SCEs highly decreased with BrdU concentrations (130-140 level at 10 micrograms/ml: 38-60 level at 0.2 microgram/ml), when compared to the rare twin SCE values (3-6 SCE level) at all BrdU concentrations. These findings conclusively indicate that the spontaneous baseline SCE in BS B-lymphoblastoid cells is low and most BS SCEs are caused by BrdU.  相似文献   

15.
The effect of Colcemid on the in vivo system of regenerating rat liver and on the in vitro system of HeLa cell cultures was studied to determine some of the morphological and kinetic aspects of metaphase blockage and recovery. The results indicated that under certain conditions the blocking effects of the drug were reversed; a functional bipolar spindle reorganized, and normal division resulted. Individual HeLa cells were followed by time-lapse cinemicrography prior to, during, and after Colcemid treatment. There was no apparent effect on cells in interphase. Cells entered mitosis at a normal rate and passed through prophase. A spindle was formed in most cells, albeit deformed, stunted, or shrunken. Within a certain range of drug concentrations, the spindle lengths showed characteristic unimodal distributions. After a 2-hr exposure to the drug followed by 1 hr in fresh medium, spindle lengths were restored to normal. Cells arrested in metaphase for periods as long as 5 hr were capable of reconstituting a normal functional spindle. Cells blocked for periods longer than 5 to 6 hr failed to recover.  相似文献   

16.
The influence of acrolein or spermine on the viability and growth of phytohaemagglutinin-stimulated rat thymic lymphocytes in cultures supplemented with foetal calf serum have been investigated. Acrolein (greater than 20 microM) was cytotoxic; spermine had little effect on viability, but inhibited [3H]TdR incorporation at low concentrations (approximately 10 microM). Cells treated with greater than 8 microM acrolein 3 hr before stimulation exhibited irreversible inhibition of protein synthesis, whereas 50 microM spermine had no effect, even when cells were treated for 24 hr before stimulation. However, addition of 25 microM spermine after stimulation did inhibit both [3H]-uridine incorporation and protein synthesis: this was reversible if cells were freed of polyamine within 4 hr, but not if washed after 24 hr. These results show that, contrary to several previous reports, in-vitro inhibition of cell proliferation by spermine is not due to the formation and action of acrolein.  相似文献   

17.
The modification of methylglyoxal bis(guanylhydrazone) (MGBG) by 42 degrees C hyperthermia-and/or radiation-induced cell killing was examined in Chinese hamster V-79 cells. At concentrations of more than 10 microM, cell survival decreased exponentially with increased MGBG exposure times. Cell lethality of MGBG (10 microM) was not specific for cell-cycle phases tested from G1/S through G2. When cells were treated with MGBG (10 microM) for 6 hr and then exposed to 42 degrees C hyperthermia with or without a 24-hr interval, cell survival decreased markedly compared with that for 42 degrees C alone. Cells became thermosensitive after MGBG treatment. Cells exposed to MGBG (10 microM) for 6 hr before or after X irradiation were slightly radiosensitive. When X irradiation was combined with MGBG and 42 degrees C hyperthermia, cells became more radiosensitive. From these results, it is suggested that MGBG may change the intracellular state to sensitize cells to the cytotoxic action(s) of hyperthermia.  相似文献   

18.
The time-dependent cytocidal and growth inhibitory effects of Adriamycin (ADM) on monolayer cultures of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumor cells were analyzed. The inhibitory effect on cell proliferation was assessed by colony formation in soft agar. Growth inhibition and [3H]thymidine labeling indices clearly demonstrate a dose-dependent antimitotic and cytotoxic effect of the drug. At low concentrations (10(-9)-10(-8) M), 90-100% of cells survived 24-hr exposure. At a higher concentration (10(-5) M), 75-80% of cells survived after 8-hr exposure; by 72 hr only 20-30% of the cells remained. Autoradiographic examination of the pulse-labeled cultures demonstrated no change in the proportion of cells in S-phase during the first 4 hr of treatment. Subsequently DNA synthesis was completely abolished and remained inhibited for the duration of the experiment (72 hr). Clonogenic assay revealed a complete arrest of growth in cells exposed to 10(-5) M ADM and greater than 60% inhibition of cell proliferation at 10(-7) M. Ultrastructural changes were not observed in cells during the first 4 hr of treatment; however, after 8 hr most surviving cells exhibited alterations in nuclear chromatin. The surviving cells showed mitochondrial degeneration, myelin body formation, and vacuolization of the endoplasmic reticulum. This study shows the potential usefulness of the primary culture system in drug evaluation. In addition, serial observation of the effects of ADM revealed a cell subpopulation of the primary culture with differential sensitivity to the drug.  相似文献   

19.
In these studies we have used wild-type Chinese hamster ovary cells (AA8) and a mutant cell line (UV-41) deficient in excision repair to compare sister chromatid exchange (SCE) induction after X irradiation under oxic and hypoxic conditions. X irradiation of AA8 cells under oxic conditions induced only a slight increase in SCEs, whereas at each dose tested a significantly greater number of SCEs were induced in hypoxic cells. When AA8 cells were X-irradiated and the addition of bromodeoxyuridine (BrdU) was delayed for 20 h to allow DNA lesions to be repaired, the levels of SCEs detected in both oxic and hypoxic cells returned to background levels. X irradiation of UV-41 cells also induced only a slight increase of SCEs in oxic cells, whereas a significant number of SCEs were induced in hypoxic cells. However, in contrast to results with AA8 cells, when hypoxic UV-41 cells were X-irradiated and the addition of BrdU was delayed for 20 h, the number of SCEs remained significantly above background levels. In combination with previous alkaline elution data, these results are consistent with the possibility that DNA-protein crosslinks are responsible for the SCEs induced by X irradiation of hypoxic cells. Irrespective of the mechanism(s) involved, the data presented suggest that the SCE assay may potentially aid in the detection of hypoxic tumor cells.  相似文献   

20.
The effects of extreme hypoxia on cell cycle progression were studied by simultaneous determination of DNA and bromodeoxyuridine (BrdU) contents of individual cells. V79-379A cells were pulse-labelled with BrdU (1 microM, 20 min, 37 degrees C) and then incubated for up to 12 hr in BrdU-free medium under either aerated or extremely hypoxic conditions. After the incubation interval (0-12 hr), the cells were trypsinized and fixed in 50% EtOH. Propidium iodide and a fluorescein-labelled monoclonal antibody to BrdU were then used to quantify DNA content and incorporated BrdU, respectively. Measurements in individual cells were made by simultaneous detection of green and red fluorescence upon excitation at 488 nm using flow cytometry. Bivariate analysis revealed progression of BrdU-labelled cells in aerated cultures out of S phase, into G2 and cell division, with halving of mean fluorescence, and back into S phase by approximately 9 hr after the BrdU pulse. Hypoxia immediately arrested cells in all phases of the cell cycle. Both the DNA distribution and the bivariate profile of cells that were fixed from 2 to 12 hr after induction of hypoxia were identical to the 0 hr controls. The percent of cells with green fluorescence in a mid-S phase window remained 100% and the mean fluorescence of these cells remained at control (0 hr) levels. This indicates that, under hypoxic conditions, cells were moving neither into nor out of S phase. Cultures that had been hypoxic for 12 hr exhibited an increasing rate of BrdU uptake with time after re-aeration. Re-aerated cells were able to complete or initiate DNA synthesis, but their rates of progression through the cell cycle were markedly reduced. A large fraction of cells appeared unable to divide up to 12 hr following release from hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号