首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptations of nodules of cowpea (Vigna unguiculata L. Walp. cv Vita 3: Bradyrhizobium CB 756) to growth in pO2 ranging from 1 to 80% O2 (volume/volume) involved both readily reversible mechanisms of adjustment and more stable alterations which together resulted in nodules with widely ranging resistance to diffusion of gases. Those grown in subambient pO2 (1-5% O2 were altered such that rapid diffusional adjustment was unable to prevent irreversible loss of nitrogenase on their transfer to higher levels of O2. Those cultured in 80% had adapted to over-supply of O2 such that their transfer to lower levels of O2 limited both nitrogenase and respiratory CO2 release. There was also some evidence for `protective respiration.' Measurement of diffusional properties based on gas exchange kinetics indicated that gaseous permeability values for nodules from 5 to 40% O2 were relatively constant around 20 × 10−3 millimeters per second, while those for nodules from 1% O2 were as high as 67.7 × 10−3 millimeter per second and from 80% as low as 6.8 × 10−3 millimeters per second. Estimates of the thickness of the diffusion barrier ranged from 7.5 micrometers for nodules from 1% O2 to 71.9 micrometers in those from 80% O2.  相似文献   

2.
When excised root nodules ofCoriaria arborea are assayed for nitrogenase activity at various pO2 they show a broad optimum between 20 and 40 kPa O2, with some evidence for adaptation. Continuous flow assays of nodulated root systems of intact plants indicate that Coriaria shows an acetylene induced decline in nitrogenase activity. When root systems were subject to step changes in pO2 nitrogenase activity responded with a steep decline followed by a slower rise in activity both at lower and higher than ambient pO2. Thus Coriaria nodules are able to adapt rapidly to oxygen levels well above and well below ambient. Measurement of nodule diffusion resistance showed that the adaptation is accompanied by rapid increase in resistance at above ambient pO2 and decrease in resistance at below ambient pO2. Plants grown with root systems at pO2 from 5–40 kPa O2 did not differ in growth or nodulation. The anatomy of Coriaria nodules shows they have a dense periderm which encircles the nodule and also closely invests the infected zone. The periderm is both thicker and more heavily suberised in nodules grown at high pO2 than at low pO2. Vacuum infiltration of India ink indicates that oxygen diffusion is entirely through the lenticel and via a small gap adjacent to the stele.  相似文献   

3.
An open gas exchange system was used to monitor the nonsteady state and steady state changes in nitrogenase activity (H2 evolution in N2:O2 and Ar:O2) and respiration (CO2 evolution) in attached, excised, and sliced nodules of soybean (Glycine max L. Merr.) exposed to external pO2 of 5 to 100%. In attached nodules, increases in external pO2 in steps of 10 or 20% resulted in sharp declines in the rates of H2 and CO2 evolution. Recovery of these rates to values equal to or greater than their initial rates occurred within 10 to 60 minutes of exposure to the higher pO2. Recovery was more rapid at higher initial pO2 and in Ar:O2 compared to N2:O2. Sequential 10% increments in pO2 to 100% O2 resulted in rates of H2 evolution which were 1.4 to 1.7 times the steady state rate at 20% O2 in Ar. This was attributed to a relief at high pO2 from the 40% decline in nitrogenase activity that was induced by Ar at a pO2 of 20%. Changes in nodule respiration rate could not account for the nodules' ability to adjust to high external pO2, supporting the hypothesis that soybean nodules have a variable barrier to O2 diffusion which responds slowly (within minutes) to changes in pO2. Nodule excision and slicing resulted in 45 and 78% declines, respectively, in total specific nitrogenase activity at 20% O2. In contrast with the result obtained with intact nodules, subsequent 10% increases in pO2 in Ar:O2 did not result in transient declines in H2 evolution rates, but in the rapid attainment of new steady state rates. Also, distinct optima in nitrogenase activity were observed at about 60% O2. These results were consistent with an increase in the diffusive resistance of the nodule cortex following nodule excision or nodule slicing. This work also shows the importance of using intact plants and continuous measurements of gas exchange in studies of O2 diffusion and nitrogenase activity in legume nodules.  相似文献   

4.
Nodulated cowpea (Vigna unguiculata [L.] Walp. cv Vita 3: Bradyrhizobium strain CB756) and soybean (Glycine max [L.] Merr. cv White Eye: Bradyrhizobium strain CB1809) were grown with their root systems maintained in a flowing gas stream containing a range of pO2 (1-80%, v/v) in N2 for up to 28 days after planting. At the extremes of sub- and supra-ambient pO2, the levels of leghemoglobin (Lb) in nodules were reduced. However, neither the proportional composition of Lb component proteins (eight in soybean, three in cowpea) nor their oxidation state was affected by pO2. Short-term changes in pO2 (transferring plants grown with sub- or supra-ambient pO2 in the rhizosphere to air or vice versa) caused a significant decline in Lb content and, in cowpea but not soybean, where pO2 was increased, a higher percentage of oxidation of Lb. Combining data on changes in Lb level of cowpea nodules grown in sub-ambient pO2 with those for their structural adaptation to an under supply of O2 indicated that, despite the nodules having a lower level of Lb, the amount per infected cell was increased by up to twofold and per bacteroid up to fivefold (in those from 1% O2) compared to those grown in air. Progressive decline in pO2 resulted in a progressive increase on this basis, indicating a close relationship between Lb content and the adaptation of nodule functioning to external O2 level.  相似文献   

5.
The N2-fixing legume nodule requires O2 for ATP production; however, the O2 sensitivity of nitrogenase dictates a requirement for a low pO2 inside the nodule. The effects of long term exposures to various pO2s on N2[C2H2] fixation were evaluated with intact soybean (Glycine max [L.] Merr., var. Wye) plants. Continuous exposure of their rhizosphere to a pO2 of 0.06 atmospheres initially reduced nitrogenase activity by 37 to 45% with restoration of original activity in 4 to 24 hours and with no further change in tests up to 95 hours; continuous exposure to 0.02 atmosphere of O2 initially reduced nitrogenase activity 72%, with only partial recovery by 95 hours. Similar exposures to a pO2 of 0.32 atmospheres had little effect on N2[C2H2] fixation; a pO2 of 0.89 atmospheres initially reduced nitrogenase activity by 98% with restoration to only 14 to 24% of that of the ambient O2 controls by 95 hours. Re-exposure to ambient pO2 of plants adapted to nonambient pO2s reduced N2[C2H2] fixation to similar magnitudes as the reductions which occurred upon initial exposure to variant pO2 conditions, and a time period was required to readapt to ambient O2. It is concluded that the N2[C2H2]-fixing system of intact soybean plants is able to adapt to a wide range of external pO2s as probably occur in soil. We postulate that this occurs through an undefined mechanism which enables the nodule to maintain an internal pO2 optimal for nitrogenase activity.  相似文献   

6.
Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S. Moore) L. Johnson. and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minutes. Myrica gale L. nodules showed a sharp decline followed by a rapid return to peak activity. Alnus incana ssp. rugosa (Du Roi) Clausen. nodules usually showed varying degrees of decline followed by a slower return to peak or near-peak activity. We call these effects acetylene-induced transients. Rapid increases in oxygen tension also caused dramatic transient decreases in nitrogenase activity in all species. The magnitude of the transient decrease was related to the size of the O2 partial pressure (pO2) rise, to the proximity of the starting and ending oxygen tensions to the pO2 optimum, and to the time for which the plant was exposed to the lower pO2. Oxygen-induced transients, induced both by step jumps in pO2 and by O2 pulses, were also observed in cultures of Frankia. The effects seen in nodules are purely a response by the bacterium and not a nodule effect per se. Oxygen-induced nitrogenase transients in actinorhizal nodules from the plant genera tested here do not appear to be a result of changes in nodule diffusion resistance.  相似文献   

7.
Various forms of stress result in decreased O2 permeability or decreased capacity to consume O2 in legume root nodules. These changes alter the nodule interior O2 concentration (Oi). To determine the relationship between Oi and nitrogenase activity in attached soybean (Glycine max) nodules, we controlled Oi by varying external pO2 while monitoring internal H2 concentration (Hi) with microelectrodes. Oi was monitored by noninvasive leghemoglobin spectrophotometry (nodule oximetry). After each step-change in Oi, Hi approached a new steady state, with a time constant averaging 23 s. The rate of H2 production by nitrogenase was calculated as the product of Hi, nodule surface area, and nodule H2 permeability. H2 permeability was estimated from O2 permeability (measured by nodule oximetry) by assuming diffusion through air-filled pores; support for this assumption is presented. Oi was nearly optimal for nitrogenase activity (H2 production) between 15 and 150 nm. A 1- to 2-min exposure to elevated external pO2 (40-100 kPa) reduced Hi to zero, but nitrogenase activity recovered quickly under air, often in <20 min. This rapid recovery contrasts with previous reports of much slower recovery with longer exposures to elevated pO2. The mechanism of nitrogenase inhibition may differ between brief and prolonged O2 exposures.  相似文献   

8.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

9.
The objectives of this study were to determine whether attached nodules of soybean (Glycine max L. Merr.) could adjust to gradual increases in rhizosphere pO2 without nitrogenase inhibition and to determine whether the nitrogenase activity of the nodules is limited by pO2 under ambient conditions. A computer-controlled gas blending apparatus was used to produce linear increases (ramps) in pO2 around attached nodulated roots of soybean plants in an open gas exchange system. Nitrogenase activity (H2 production in N2:O2 and Ar:O2) and respiration (CO2 evolution) were monitored continuously as pO2 was ramped from 20 to 30 kilopascals over periods of 0, 5, 10, 15, and 30 minutes. The 0, 5, and 10 minute ramps caused inhibitions of nitrogenase and respiration rates followed by recoveries of these rates to their initial values within 30 minutes. Distinct oscillations in nitrogenase activity and respiration were observed during the recovery period, and the possible basis for these oscillations is discussed. The 15 and 30 minute ramps did not inhibit nitrogenase activity, suggesting that such inhibition is not a factor in the regulation of nodule diffusion resistance. During the 30 minute ramp, a stimulation of nitrogenase activity was observed, indicating that an O2-based limitation to nitrogenase activity occurs in soybean nodules under ambient conditions.  相似文献   

10.
Nodulated cowpea (Vigna unguiculata L. Walp. cv Vita 3:Bradyrhizobium CB 756) plants were cultured with their whole root system or crown root nodulation zone maintained for periods from 5 to 69 days after planting in atmospheres containing a range of pO2 (1-80%, v/v) while the rest of the plant grew in normal air. Growth (dry matter yield) and N2 fixation were largely unaffected by pO2 from 10 to 40%. Decrease in fixation at pO2 below 5% was due to lower nodulation and nodule mass and, at pO2 above 60%, to a fall in specific N2-fixing activity of nodules. Root:shoot ratios were significantly lower at pO2 below 2.5%. The effect of pO2 on nitrogenase activity (acetylene reduction), both of whole nodulated root systems and crown root nodulation zones, varied with plant age but was generally lower at supra- and subambient extremes of O2. H2 evolution showed a sharp optimum at 20% O2 but was at most 4% of total nitrogenase activity. The ratio of CO2 evolved to substrate (C2H2+H+) reduced by crown root nodulation zones was constant (6 moles CO2 per mole substrate reduced) from 2.5 to 60% O2 but at levels below 2.5 and above 80% O2 reached values between 20 and 30 moles CO2 per mole substrate reduced. Effects of long-term growth with nonambient pO2 on adaptation and efficiency of functioning of nodules are discussed.  相似文献   

11.
The effects of increasing rhizosphere pO2on nitrogenase activity and nodule resistance to O2diffusion were investigated in soybean plants [Glycine max (L.) Merr. cv. Harosoy 63] in which nitrogenase (EC 1.7.99.2) activities were inhibited by (a) removal of the phloem tissue at the base of the stem (stem girdling), (b) exposure of roots to 10 mM NO3over 5 days (NO3-treated), or (c) partial inactivation of nitrogenase activity by an exposure of nodulated roots to 100 kPa O2(O2-inhibitcd). In control plants and in plants which had been treated with 100 kPa O2, increasing rhizosphere O2concentrations in 10 kPa increments from 20 to 70 kPa did not alter the steady-state nitrogenase activity. In contrast, in plants in which nitrogenase activities were depressed by stem girdling or by exposure to NO3, increasing rhizosphere pO2resulted in a recovery of 57 or 67%, respectively, of the initial, depressed rates of nitrogenase activity. This suggests that the nitrogenase activity of stem-girdled and NO3-treated soybeans was O2-limited. For each treatment, theoretical resistance values for O2diffusion into nodules were estimated from measured rates of CO2exchange, assuming a respiratory quotient of 1.1 and 0 kPa of O2in the infected cells. At an external partial pressure of 20 kPa O2, the stem-girdled and NO3--treated plants displayed resistance values which were 4 to 8.6 times higher than those in the nodules of the control plants. In control and O2-inhibited plants, increases in pO2from 20 to 70 kPa in 10 kPa increments resulted in a 2.5- to 3.9-fold increase in diffusion resistance to O2, and had little effect on either respiration or nitrogenase activity. In contrast, in stem-girdled and NO3--treated plants, increases in external pO2had little effect on diffusion resistance to O2, but resulted in a 2.3- to 3.2-fold increase in nodule respiration and nitrogenase activity. These results are consistent with stem-girdling and NO3--inhibition treatments limiting phloem supply to nodules causing an increase in diffusion resistance to O2at 20 kPa and an apparent insensitivity of diffusion resistance to increases in external pO2.  相似文献   

12.
The effect of excision on O2 diffusion and metabolism in soybean nodules   总被引:2,自引:0,他引:2  
Nitrogen-fixing nodules of soybean [Glycine max (L.) Merr. cv. Maple Arrow inoculated with Bradyrhizobium japonicum USDA 16] were studied before and after excision from the root to determine the role the O2 regulation plays in the inhibition of nodule activity and the potential for using excised nodules nodules in studies of nodule metabolism. Relative nitrogenase (EC 1.7.99.2) activity (H2 evolution in N2:O2) and nodule respiration (CO2 evolution) were monitored first in intact nodulated roots and then in freshly excised nodules of the same plant to determine the time course of the decline in nodule metabolism. Folowing excision, nitrogenase activity and respiration declined rapidly in the first minute and then more gradually. After 40 min the rate of H2 evolution was only 14–28% of that in the intact plant. In some nodules activity declined steadily, and in others there was a partial recovery in activity ca 10 min after detachment. Infected cell O2 concentration (Oi), measured by a spectro-photometric technique, also declined after nodule detachment with a time course similar to the declines in nitrogenase activity and respiration. Following excision, Oi levels declined rapidly from ca 21 nM in attached nodules to 8–12 nM at 4–10 min after excision and then more gradually to 2–3 nM O2 at 30–40 min after excision. These results show that the nodules' permeability to gas diffusion continued to be regulated for up to 40 min after detachement. At 40 min after detachment, when excised nodules displayed steady-state rates of gas exchange, linear increases in pO2 from 20 to 100% at 4% min?1 resulted in recoveries of H2 and CO2 evolution, indicating that Oi limited nitrogenase activity durig this period, and that energy reserves were greatly in excess of the O2 available for respiration. When detached nodules were equilibrated for 12 h at 20, 30 and 50% O2, Oi values measured at supra-ambient pO2 were greater than those at 20% O2 and were linked with a more rapid decline in nitrogenase activity. Also, increases in external pO2 (Oc) failed to stimulate nodule metabolism, suggesting that the nodules' energy reserves were no longer greatly in excess of their respiratory demands. It was concluded that soybean nodules could provide useful material for steady-state studies of nodule metabolism between 40 and 240 min after detachment, but to attain metabolic rates equivalent to in vivo rates the nodules must be exposed to above-ambient pO2.  相似文献   

13.
Inhibition of nitrogenase (EC 1.18.6.1) activity by O2 has been suggested to be an early response to disturbance in carbon supply to root nodules in the Frankia‐Alnus incana symbiosis. Intact nodulated root systems of plants kept in prolonged darkness of 22 h were used to test responses to O2 and short‐term N2 deprivation (1 h in Ar:O2). By using a Frankia lacking uptake hydrogenase it was possible to follow nitrogenase activity over time as H2 evolution in a gas exchange system. Respiration was simultaneously recorded as CO2 evolution. Dark‐treated plants had lower initial nitrogenase activity in N2:O2 (68% of controls), which declined further during a 1‐h period in the assay system in N2:O2 at 21 and 17% O2, but not at 13% O2. When dark‐treated plants were deprived of N2 at 21 and 17% O2 nitrogenase activity declined rapidly to 61 and 74%, respectively, after 20 min, compared with control plants continuously kept in their normal light regime. In contrast, there was no decline in dark‐treated plants at 13% O2, and only a smaller and temporary decline in control plants at 21% O2. When dark‐treated plants were kept at 21% O2 during 45 min prior to N2 deprivation at 17% O2 the decline was abolished. This supports the idea that the decline in nitrogenase activity observed in N2:O2 at 21% O2 and during N2 deprivation was caused by O2, which affected a sensitive nodule fraction. Nodule contents of the amino acids Gln and Cit decreased during N2 deprivation, suggesting decreased assimilation of NH4+. Contents of ATP and ADP in nodules were not affected by short‐term N2 deprivation. ATP/ADP ratios were about 5 indicating a highly aerobic metabolism in the root nodule. We conclude that nitrogenase activity of Alnus plants exposed to prolonged darkness becomes more sensitive to inactivation by O2. It seemed that dark‐treated plants could not adjust their nodule metabolism at higher perceived pO2 and during cessation of NH4+ production.  相似文献   

14.
Soybean (Glycine max [L.] Merr.) seedlings grown in the absence of combined N and in an Ar:O2 (79:21, volume/volume) atmosphere had greater seedling and nodule mass, threefold higher acetylene reducing activity per gram fresh weight nodules, no observable increase in nitrogenase Fe-protein, and a higher energy charge than did control plants. A sharp fall in acetylene reducing activity and energy charge accompanying stem-girdling was prevented by exogenous succinate, a result consistent with a path from the roots to the nodule other than via the phloem.  相似文献   

15.
Soybean (Glycine max L. Merr) plants grown under control (360 µmol mol?1) or elevated CO2 concentration (800 µmol mol?1) from 33 to 42 d after sowing were assayed for various components of in vivo nitrogenase activity to test the hypothesis that increasing carbohydrate supply to nodules would increase the potential (i.e. O2 saturated) nitrogenase activity and impose a more severe O2 limitation on both nodule metabolism and total nitrogenase activity. Within 51 h of elevated CO2 treatment, significant increases relative to control plants were seen in total nitrogenase activity expressed per plant. After 6 d of elevated CO2, the total nitrogenase activity per plant was 18% higher than that in control. This was attributed to an initial increase in nodule size, and a subsequent increase in nodule number following plant exposure to elevated CO2. However, after 9 d of elevated CO2, the potential and total nitrogenase activities per gram nodule dry weight were lower, not higher than corresponding values in plants in the control treatment. These results did not support the hypothesis. It was concluded that the metabolic capacity of the control nodules were not limited by carbohydrate supply, at least at the assay temperatures employed here.  相似文献   

16.
Nodulated soybeans (Glycine max L. Merr, cv. Maple Arrow) were exposed to various physiological and environmental treatments to determine the relationship between nodule adenylate pools and the degree of O2 limitation of nitrogenase. Adenylate energy charge (AEC = [ATP + 0.5 ADP]/[ATP + ADP + AMP]) and ATP/ADP ratios declined under conditions of decreased (10%) external pO2 but increased in nodules exposed to elevated (30%) external pO2. Nitrogenase activity was inhibited by both pO2 treatments, but recovered towards initial levels within 45 min. AEC also returned to initial levels during this period. To account for these and related data in the literature, it was hypothesized that 1) legume nodules regulate infected cell O2 concentration (Oi) to maintain adenylate pools at levels which limit respiratory metabolism: 2) treatments which decrease Oi alter the adenylate pools and further limit nodule metabolism; 3) treatments which increase Oi to levels in excess of a narrow range alter the adenylate pools and activate biochemical pathways which are not conducive to nitrogenase activity. In a preliminary test of these hypotheses, changes in AEC and ATP/ADP ratio were studied in nodules in which nitrogenase activity was inhibited by stem girdling, nitrate fertilization and exposure to an Ar:O2 atmosphere. All three treatments caused an increased O2 limitation of nodule respiration and nitrogenase activity. However, decreases in AEC were observed only in the stem girdling and nitrate fertilization treatment: Ar:O2 exposure had no effect on whole nodule AEC. While this result challenged the hypotheses suggesting a central role for adenylates in the regulation of O2-limited metabolism, it was noted that the Ar:O2 treatment would differ from the other treatments in that it would have a specific effect on the ATP demands for NH3 assimilation in the plant fraction. Since AEC and ATP/ADP ratio would be affected by both the rate of ATP synthesis (potentially an O2-limited process) and the demand for ATP, changes in these parameters in the whole nodule may not be a reliable indicator of adenylate-mediated O2 limitation. Futher studies are needed to examine in vivo changes in adenylate pools in the plant and bacteroid fractions in nodules which vary in their degree of O2-limited metabolism.  相似文献   

17.
Soybean (Glycine max cv Hodgson) nitrogenase activity (C2H2 reduction) in the presence or absence of nitrate was studied at various external O2 tensions. Nitrogenase activity increased with oxygen partial pressure up to 30 kilopascals, which appeared to be the optimum. A parallel increase in ATP/ADP ratios indicated a limitation of respiration rate by low O2 tensions in the nodule, and the values found for adenine nucleotide ratios suggested that the nitrogenase activity was limited by the rate of ATP regeneration. In the presence of nitrate, the nitrogenase activity was low and less stimulated by increased pO2, although the nitrite content per gram of nodules decreased from 0.05 to 0.02 micromole when pO2 increased from 10 to 30 kilopascals. Therefore, the accumulation of nitrite inside the nodule was probably not the major cause of the inhibition. Instead, inhibition by nitrate could be due to competition for reducing power between nitrate reduction and bacteroid or mitochondrial respiration inside the nodule. This is supported by the observation of decrease in ATP/ADP ratios from 1.65, in absence of nitrate, to 0.93 in the presence of this anion at 30 kilopascals O2. Furthermore, the inhibition was suppressed by the addition, to the plant nutrient solution, of 15 millimolar l-malate, a carbon substrate that is considered to be the major source of reductant for the bacteroids in the symbiosis.  相似文献   

18.
When Frankia HFPCcI3 was grown in culture at oxygen O2 levels ranging from 2 to 70 kilopascals O2, under nitrogen fixing conditions, nitrogenase activity adapted to ambient pO2 and showed a marked optimum close to growth pO2. Vesicles were thin walled at low pO2 and very thick walled at high pO2. Freeze fracture transmission electron microscopy confirmed that Frankia produces vesicles with outer walls thickened by multiple lipid-like monolayers, in proportion to ambient pO2.  相似文献   

19.
The gas exchange characteristics of intact attached nodulated roots of pea (Pisum sativum cv. Finale X) and lupin (Lupinus albus cv. Ultra) were studied under a number of environmental conditions to determine whether or not the nodules regulate resistance to oxygen diffusion. Nitrogenase activity (H2 evolution) in both species was inhibited by an increase in rhizosphere pO2 from 20% to 30%, but recovered within 30 min without a significant increase in nodulated root respiration (CO2 evolution). These data suggest that the nodules possess a variable barrier to O2 diffusion. Also, nitrogenase activity in both species declined when the roots were either exposed to an atmosphere of Ar:O2 or when the shoots of the plants were excised. These declines could be reversed by elevating rhizosphere pO2, indicating that the inhibition of nitrogenase activity resulted from an increase in gas diffusion resistance and consequent O2-limitation of nitrogenase-linked respiration. These results indicate that nodules of pea and lupin regulate their internal O2 concentration in a manner similar to nodules of soybean, despite the distinct morphological and biochemical differences that exist between the nodules of the 3 species. Experiments in which total nitrogenase activity (TNA = H2 production in Ar:O2) in pea and lupin nodules was monitored while rhizosphere pO2 was increased gradually to 100%, showed that the resistance of the nodules to O2 diffusion maintains nitrogenase activity at about 80% of its potential activity (PNA) under normal atmospheric conditions. The O2-limitation coefficient of nitrogenase (OLCN= TNA/PNA) declined significantly with prolonged exposure to Ar:O2 or with shoot excision. Together, these results indicate a significant degree of O2-limitation of nitrogenase activity in pea and lupin nodules, and that yields may be increased by realizing full potential activity.  相似文献   

20.
A novel, pulse-modulated spectroscopic system for measuring fractional leghemoglobin oxygenation and infected cell O2 concentration (Oi) in intact attached nodules of soybean (Glycine max) is described. The system is noninvasive and uses a pulsed (1000 Hertz) light-emitting diode coupled to an optical fiber to illuminate the nodule with light at 660 nanometer. A second optical fiber receives a portion of the light reflected from the nodule and directs this to a photodiode. A lock-in amplifier measures only the signal from the photodiode which is in phase with the pulsed light from the light-emitting diode, and the voltage output from the amplifier, proportional to reflectance, is used to calculate fractional leghemoglobin oxygenation and the nanomolar concentration of free O2 in the infected cells of the nodule (Oi). The system was used to show that inhibition of nitrogenase activity in soybean nodules by NO3 treatment, stem-girdling, continuous darkness, or nodule disturbance is caused by a reduction in Oi and limitation of respiration in support of nitrogenase activity. A plot of nitrogenase activity (measured as peak H2 evolution in Ar:O2) versus Oi for the various treatments was consistent with the concept that Oi limits in vivo nitrogenase activity in legume nodules under adverse conditions. The potential for using Oi to estimate nitrogenase activity in laboratory and field-grown legumes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号