首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase, in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport.  相似文献   

2.
Kinesin-I is essential for the transport of membrane-bound organelles in neural and nonneural cells. However, the means by which kinesin interacts with its intracellular cargoes, and the means by which kinesin-cargo interactions are regulated in response to cellular transport requirements are not fully understood. The C terminus of the Drosophila kinesin heavy chain (KHC) was used in a two-hybrid screen of a Drosophila cDNA library to identify proteins that bind specifically to the kinesin tail domain. UNC-76 is an evolutionarily conserved cytosolic protein that binds to the tail domain of KHC in two-hybrid and copurification assays, indicating that kinesin and UNC-76 form a stable complex in vivo. Loss of Drosophila Unc-76 function results in locomotion and axonal transport defects reminiscent of the phenotypes observed in kinesin mutants, suggesting that UNC-76 is required for kinesin-dependent axonal transport. Unc-76 exhibits dosage-sensitive genetic relationships with Khc and Kinesin light chain mutations, further supporting the hypothesis that UNC-76 and kinesin-I work in a common transport pathway. Given the interaction of FEZ1, the mammalian homolog of UNC-76, with protein kinase Czeta, and the role of FEZ1 in axon outgrowth, we propose that UNC-76 helps integrate kinesin activity in response to transport requirements in axons.  相似文献   

3.
Haplo-insufficiency of human Lis1 causes lissencephaly. Reduced Lis1 activity in both humans and mice results in a neuronal migration defect. Here we show that Drosophila Lis1 is highly expressed in the nervous system. Lis1 is essential for neuroblast proliferation and axonal transport, as shown by a mosaic analysis using a Lis1 null mutation. Moreover, it is cell-autonomously required for dendritic growth, branching and maturation. Analogous mosaic analysis shows that neurons containing a mutated cytoplasmic-dynein heavy chain (Dhc64C) exhibit phenotypes similar to Lis1 mutants. These results implicate Lis1 as a regulator of the microtubule cytoskeleton and show that it is important for diverse physiological functions in the nervous system.  相似文献   

4.
A protein required to localize mitochondria to Drosophila nerve terminals has been identified genetically. Photoreceptors mutant for milton show aberrant synaptic transmission despite normal phototransduction. Without Milton, synaptic terminals and axons lack mitochondria, although mitochondria are numerous in neuronal cell bodies. In contrast, synaptic vesicles continue to be transported to and concentrated at synapses. Milton protein is associated with mitochondria and is present primarily in axons and synapses. A likely explanation of the apparent trafficking defect is offered by the coimmunoprecipitation of Milton and kinesin heavy chain. Transfected into HEK293T cells, Milton induces a redistribution of mitochondria within the cell. We propose that Milton is a mitochondria-associated protein required for kinesin-mediated transport of mitochondria to nerve terminals.  相似文献   

5.
《Current biology : CB》2022,32(20):4438-4450.e5
  1. Download : Download high-res image (276KB)
  2. Download : Download full-size image
  相似文献   

6.
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.  相似文献   

7.
The microtubule cytoskeleton plays a pivotal role in cytoplasmic organization, cell division, and the correct transmission of genetic information. In a screen designed to identify fission yeast genes required for chromosome segregation, we identified a strain that carries a point mutation in the SpRan GTPase. Ran is an evolutionarily conserved eukaryotic GTPase that directly participates in nucleocytoplasmic transport and whose loss affects many biological processes. Recently a transport-independent effect of Ran on spindle formation in vitro was demonstrated, but the in vivo relevance of these findings was unclear. Here, we report the characterization of a Schizosaccharomyces pombe Ran GTPase partial loss of function mutant in which nucleocytoplasmic protein transport is normal, but the microtubule cytoskeleton is defective, resulting in chromosome missegregation and abnormal cell shape. These abnormalities are exacerbated by microtubule destabilizing drugs, by loss of the spindle checkpoint protein Mph1p, and by mutations in the spindle pole body component Cut11p, indicating that SpRan influences microtubule integrity. As the SpRan mutant phenotype can be partially suppressed by the presence of extra Mal3p, we suggest that SpRan plays a role in microtubule stability.  相似文献   

8.
Neuronal mitochondria regulate synaptic physiology and cellular survival, and disruption of their function or transport causes neurological disease. We present a fluorescence method to selectively image mitochondrial dynamics in the mouse nervous system, in both live mice and acute explants. We show that axon damage and recovery lead to early and sustained changes in anterograde and retrograde transport. In vivo imaging of mitochondria will be a useful tool to analyze this essential organelle.  相似文献   

9.
Although synapses are assembled in a highly regulated fashion, synapses once formed are not static structures but continue to expand and retract throughout the life of an organism. One second messenger that has been demonstrated to play a critical role in synaptic growth and function is cAMP. Here, we have tested the idea that signaling through the heterotrimeric G protein, Gs, plays a coincident role with increases in intracellular Ca(+2) in the regulation of adenylyl cyclases (ACs) during synaptic growth and in the function of synapses. In larvae containing a hypomorphic mutation in the dgs gene encoding the Drosophila Gs alpha protein, there is a significant decrease in the number of synaptic boutons and extent of synaptic arborization, as well as defects in the facilitation of synaptic transmission. Microscopic analysis confirmed that Gs alpha is localized at synapses both pre- and postsynaptically. Restricted expression of wild-type Gs alpha either pre- or postsynaptically rescued the mutational defects in bouton formation and defects in the facilitation of synaptic transmission, indicating that pathways activated by Gs alpha are likely to be involved in the reciprocal interactions between pre- and postsynaptic cells required for the development of mature synapses. In addition, this Gs alpha mutation interacted with fasII, dnc, and hyperexcitability mutants in a manner that revealed a coincident role for Gs alpha in the regulation of cAMP and FASII levels required during growth of these synapses. Our results demonstrate that Gs alpha-dependent signaling plays a role in the dynamic cellular reorganization that underlies synaptic growth.  相似文献   

10.
Fray is a serine/threonine kinase expressed by the peripheral glia of Drosophila, whose function is required for normal axonal ensheathment. Null fray mutants die early in larval development and have nerves with severe swelling and axonal defasciculation. The phenotype is associated with a failure of the ensheathing glia to correctly wrap peripheral axons. When the fray cDNA is expressed in the ensheathing glia of fray mutants, normal nerve morphology is restored. Fray belongs to a novel family of Ser/Thr kinases, the PF kinases, whose closest relatives are the PAK kinases. Rescue of the Drosophila mutant phenotype with PASK, the rat homolog of Fray, demonstrates a functional homology among these proteins and suggests that the Fray signaling pathway is widely conserved.  相似文献   

11.
Mutations in the dynamin-related GTPase, Mgm1p, have been shown to cause mitochondrial aggregation and mitochondrial DNA loss in Saccharomyces cerevisiae cells, but Mgm1p's exact role in mitochondrial maintenance is unclear. To study the primary function of MGM1, we characterized new temperature sensitive MGM1 alleles. Examination of mitochondrial morphology in mgm1 cells indicates that fragmentation of mitochondrial reticuli is the primary phenotype associated with loss of MGM1 function, with secondary aggregation of mitochondrial fragments. This mgm1 phenotype is identical to that observed in cells with a conditional mutation in FZO1, which encodes a transmembrane GTPase required for mitochondrial fusion, raising the possibility that Mgm1p is also required for fusion. Consistent with this idea, mitochondrial fusion is blocked in mgm1 cells during mating, and deletion of DNM1, which encodes a dynamin-related GTPase required for mitochondrial fission, blocks mitochondrial fragmentation in mgm1 cells. However, in contrast to fzo1 cells, deletion of DNM1 in mgm1 cells restores mitochondrial fusion during mating. This last observation indicates that despite the phenotypic similarities observed between mgm1 and fzo1 cells, MGM1 does not play a direct role in mitochondrial fusion. Although Mgm1p was recently reported to localize to the mitochondrial outer membrane, our studies indicate that Mgm1p is localized to the mitochondrial intermembrane space. Based on our localization data and Mgm1p's structural homology to dynamin, we postulate that it functions in inner membrane remodeling events. In this context, the observed mgm1 phenotypes suggest that inner and outer membrane fission is coupled and that loss of MGM1 function may stimulate Dnm1p-dependent outer membrane fission, resulting in the formation of mitochondrial fragments that are structurally incompetent for fusion.  相似文献   

12.
13.
Han YG  Kwok BH  Kernan MJ 《Current biology : CB》2003,13(19):1679-1686
BACKGROUND: Intraflagellar transport (IFT) uses kinesin II to carry a multiprotein particle to the tips of eukaryotic cilia and flagella and a nonaxonemal dynein to return it to the cell body. IFT particle proteins and motors are conserved in ciliated eukaryotes, and IFT-deficient mutants in algae, nematodes, and mammals fail to extend or maintain cilia and flagella, including sensory cilia. In Drosophila, the only ciliated cells are sensory neurons and sperm. no mechanoreceptor potential (nomp) mutations have been isolated that affect the differentiation and function of ciliated sense organs. The nompB gene is here shown to encode an IFT protein. Its mutant phenotypes reveal the consequences of an IFT defect in an insect. RESULTS: Mechanosensory and olfactory neurons in nompB mutants have missing or defective cilia. nompB encodes the Drosophila homolog of the IFT complex B protein IFT88/Polaris/OSM-5. nompB is expressed in the ciliated sensory neurons, and a functional, tagged NOMPB protein is located in sensory cilia and around basal bodies. Surprisingly, nompB mutant males produce normally elongated, motile sperm. Neuronally restricted expression and male germline mosaic experiments show that nompB-deficient sperm are fully functional in transfer, competition, and fertilization. CONCLUSIONS: NOMPB, the Drosophila homolog of IFT88, is required for the assembly of sensory cilia but not for the extension or function of the sperm flagellum. Assembly of this extremely long axoneme is therefore independent of IFT.  相似文献   

14.
During Drosophila oogenesis, localization of the transforming growth factor alpha (TGFalpha)-like signaling molecule Gurken to the oocyte membrane is required for polarity establishment of the egg and embryo. To test Gurken domain functions, full-length and truncated forms of Gurken were expressed ectopically using the UAS/Gal4 expression system, or in the germline using the endogenous promoter. GrkDeltaC, a deletion of the cytoplasmic domain, localizes to the oocyte membrane and can signal. GrkDeltaTC, which lacks the transmembrane and cytoplasmic domains, retains signaling ability when ectopically expressed in somatic cells. However, in the germline, the GrkDeltaTC protein accumulates throughout the oocyte cytoplasm and cannot signal. In addition, we found that several strong gurken alleles contain point mutations in the transmembrane region. We conclude that secretion of Gurken requires its transmembrane region, and propose a model in which the gene cornichon mediates this process.  相似文献   

15.
HOAP (HP1/ORC-associated protein) has recently been isolated from Drosophila melanogaster embryos as part of a cytoplasmic complex that contains heterochromatin protein 1 (HP1) and the origin recognition complex subunit 2 (ORC2). Here, we show that caravaggio, a mutation in the HOAP-encoding gene, causes extensive telomere-telomere fusions in larval brain cells, indicating that HOAP is required for telomere capping. Our analyses indicate that HOAP is specifically enriched at mitotic chromosome telomeres, and strongly suggest that HP1 and HOAP form a telomere-capping complex that does not contain ORC2.  相似文献   

16.
17.
《Neuron》2021,109(18):2884-2901.e7
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

18.
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.  相似文献   

19.
20.
A truncated form of the yeast mitochondrial 5-aminolevulinate (ALA) synthase was constructed by deletion of the first 75 amino acid residues of its precursor form. This truncated ALA synthase which lost its entire presequence and 40 residues of the mature part possesses a new amino terminus quite different from a typical mitochondrial presequence. This modified protein expressed in vivo is found entirely located within mitochondria. Although it was now unable to reach the matrix space, it was internalized as shown by its resistance to protease in isolated mitochondria. Pulse-chase radiolabeling in the presence of an uncoupler suggests that a membrane potential is not required for the targeting of this truncated ALA synthase. Thus, the amino-terminal signal, if indispensable as a matrix targeting signal, could be replaced by an internal sequence or a particular folding for recognition by the import machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号